FS 3029

ネットワークリモートソフト

取扱説明書

リーダー電子株式会社

目
目

1. は	じめに 1-	1
1.1 1.2	保証範囲1- 商標について1-	-1 -1
2. 仕	様	1
2. 1 2. 2 2. 3	概要	-1 -1 -1
3. 準	備 3-	1
3. 1 3. 2 3. 3	接続	-1 -2 -7
4. 各i	画面の名称と働き	1
4. 1 4. 2 4. 3 4. 4	接続先設定画面	-1 -2 -3 -5
5. 使	用方法	1
5. 1 5. 2 5. 3 5. 4	マスターPCの設定	-1 -6 -8 2

1. はじめに

このたびは、リーダー電子の製品をお買い上げいただきまして、誠にありがとうございます。 製品を安全にご使用いただくため、ご使用前に本取扱説明書を最後までお読みいただき、製品 の正しい使い方をご理解の上、ご使用ください。

本取扱説明書をご覧になっても使い方がよくわからない場合は、取扱説明書の裏表紙に記載されている本社またはお近くの営業所までお問い合わせください。

本取扱説明書をお読みになった後は、いつでも必要なとき、ご覧になれるように保管してくだ さい。

1.1 保証範囲

この製品は、リーダー電子株式会社の厳密なる品質管理および検査を経てお届けしたもので す。正常な使用状態で発生する故障について、お買い上げの日より1年間無償で修理を致し ます。

お買い上げ明細書(納品書、領収書など)は、保証書の代わりになりますので、大切に保管してください。

保証期間内でも、次の場合には有償で修理させていただきます。

- 1 火災、天災、異常電圧などによる故障、損傷。
- 2 不当な修理、調整、改造された場合。
- 3 取り扱いが不適当なために生じる故障、損傷。
- 4 故障が本製品以外の原因による場合。
- 5 お買い上げ明細書類のご提示がない場合。

この保証は日本国内で使用される場合に限り有効です。 This Warranty is valid only in Japan.

1.2 商標について

Windows は米国 Microsoft Corporationの米国およびその他の国における登録商標です。

2. 仕様

2.1 概要

本製品は、遠隔地に設置したシグナルレベルメーター(LF 986 または LF 985A)を、インター ネット経由またはローカルエリアネットワークで操作し、簡易的な監視システムを構築する アプリケーションソフトウエアです。

2.2 特長

● 遠隔操作

本製品とネットワーク接続されているシグナルレベルメーターの、チャンネル設定や測定項目設定が行えます。

● 周波数範囲

VHF、UHF、CATV 帯の測定が可能です。

● 測定データ表示

レベル、MER、BERの測定データを取得し、アプリケーション画面に表示します。

● しきい値設定

レベル、MER、BER のしきい値を設定してアラームを発生させることが可能です。

● 測定データのロギング

最大で1ヶ月分の測定データ(レベル、MER、BER)をCSV形式でHDDに自動的に保存します。

● 通信アラーム機能

データが取得できない等、通信系のエラーが発生した場合にアラームを発生させること が可能です。

2.3 規格

2.3.1 動作環境

対象機種	LF 986、LF 985A
接続台数	5 台まで(LF 986、LF 985A の混在可)
制御用 PC	0ADG に準拠する各社 DOS/V 仕様機および PC/AT 互換機
CPU	Pentium 800MHz 以上
メモリー	128MB 以上
OS	Windows XP(日本語版)
画面解像度	1024×768 以上(1280×1024 以上を推奨)
使用 PC	遠隔操作用の PC とローカル測定用の PC
インタフェース	PC に RS232C-ETHER 変換ボード(MOXA 社製 Nport5110、別
	売り(市販品))を接続して LF 986、または LF 985A をコン
	トロール

2.3.2	リモートコントロール	
	機能	ネットワーク上に接続されたシグナルレベルメーターの設 定
	設定項目	測定項目、放送方式、測定チャンネル、しきい値
2. 3. 3	モニター	
	機能 測定項目	シグナルレベルメーターで測定したデータを PC 上に表示 レベル、MER、BER
2. 3. 4	アラーム	
	通信エラー	
	機能	通信エラーが発生した場合に警告音を鳴らす (クライアントのみ)
	表示	発生した回数を画面上に表示
	しきい値	
	機能	レベル、MER の測定値がしきい値よりも低い場合に警告音 を発生
		BER の測定値がしきい値よりも大きい場合に警告音を発生
	表示	画面上の測定値表示セルを赤で表示
2. 3. 5	ログ	
	フェレルガタチャ	一些

フォルダ名称	測定日
ファイル名称	接続機器名
ファイル形式	CSV
保存データ	測定データ、アラーム
最大保存データ量	31 日分の測定データ

2.3.6 一般仕様

構成内容

CD-ROM 1
プロテクションキー(USB タイプ)1
取扱説明書1

3. 準備

3.1 接続

接続図の例を以下に示します。 本製品に接続ケーブル、Nport5110等は付属していません。別途ご購入ください。

● クライアント

システム全体の監視、統制を行います。インターネットを通じて、LF 986、LF 985Aの 制御やデータ取得を行います。

● マスター

測定場所にて LF 986、LF 985A の制御やデータ取得を行い、クライアントからの要求に 対してデータを送出します。

LF 986、LF 985A

RS232C コネクタを介して、最大で5台まで接続することができます。LF 986、LF 985A は混在していても構いません。

● RS232C⇔ETHER 変換ボード

MOXA 社製 Nport5110 を LF 986、LF 985A の台数分用意してください。なお、Nport5110 の使用方法については、Nport5110 の取扱説明書を参照してください。

3.2 PCの設定

3.2.1 付属CD-ROMの構成

付属の CD-ROM には、下記のように 2 つのアプリケーション(以下、PC アプリ)、及びプロ テクションキーのドライバが入っています。

- ・R-Client・・・クライアント側のPCにインストール(以下、クライアントアプリ)
- ・R-Master・・・マスター側のPCにインストール(以下、マスターアプリ)
- ・HASP_SRM_Runtime_setup・・・プロテクションキー用のドライバ

クライアントアプリ、マスターアプリは PC の設置場所に応じて、どちらかのソフトをインストールしてください。

※一台の PC に一つのアプリケーションをインストールするようにしてください。 クライアントアプリ、マスターアプリを同時にインストールすることも可能ですが、ス タート→プログラムへの登録は後からインストールしたアプリのみとなります。

<u>マスターアプリの起動には、プロテクションキーが必要です。マスターアプリをインスト</u> ールするPCにはプロテクションキーのドライバをインストールしてください。

CD-ROM のフォルダ構成は以下のとおりです。

- ⊙ CD-ROM
- |- 🗁 HASP_SRM_Runtime_setup
- │ └ 🗋 HASPUserSetup.exe ・・・プロテクションキー ドライバ インストーラー
- |- 🗁 R-Client
- | | | \square setup. exe
- │ └ 🗋 Setup-Client.msi ・・・クライアントアプリ
- └ 🗁 R-Master
 - ⊢ 🗋 setup. exe
 - └ 🗋 Setup-Master.msi 🔹 ・・・マスターアプリ

- 3.2.2 プロテクションキードライバのインストール
 - 1. 実行中のアプリケーションをすべて終了します。
 - 2. 付属の CD-ROM に入っている「HASPUser Setup. exe」を実行します。
 - 3. [Next>]をクリックします。

図 3-2 インストールウィザード

4. [Next>]をクリックします。

図 3-3 インストールの確認

5. [Finish>]をクリックします。

i∉ HASP SRM Run-time Setup		
HASPE	HASP SRM Run-time has been successfully installed.	
	The HASP Run-time Environment uses port 1947 to communicate with local and remote components. If you use a firewall, ensure that it does not block this port.	
Aladdin SECURA THE GLOBAL VILLAGE	Click the Finish button to exit this installation.	
	< <u>B</u> ack <u>Finish</u> Cancel	

図 3-4 インストール完了

3.2.3 PCアプリのインストール

インストール手順を以下に示します。ここではマスターアプリのインストール手順につい て説明しますが、クライアントアプリについても同様にインストールすることができます。

- 1. 実行中のアプリケーションをすべて終了します。
- 2. 付属の CD-ROM に入っている「Setup-Master.msi」を実行します。
- 3. [次へ]をクリックします。

図 3-5 セットアップウィザード

4. インストール先を指定して[次へ]をクリックします。

禄 ネットワークリモート(マスター)
インストール フォルダの選択
インストーラは次のフォルダへ ネットワークリモート(マスター) をインストールします。
このフォルダにインストールする!コま[次へ]をクリックしてください。別のフォルダにインストー ルする!コよ、アドレスを入力するか[参照]をクリックしてください。
フォルダ(圧):
C.¥Program Files¥FS3029¥ネットワークリモート(マスター)¥ 参照(心
ディスク領域(<u>D</u>)
ネットワークリモート(マスター)を現在のユーザー用が、またはすべてのユーザー用にインストールします:
○すべてのユーザー(<u>E</u>)
⊙ このユーザーのみ(M)
キャンセル 〈 戻る個〉 (次へ(N) 〉

図 3-6 インストールフォルダの選択

5. [次へ]をクリックします。

禮 ネットワークリモート(マスター)	
インストールの確認	
ネットワークリモート(マスター) をインストール する準備ができました。 [次へ] をクリックしてインストールを開始してください。	
キャンセル < 戻る(B)) 次へ(W)>

図 3-7 インストールの確認

6. [閉じる]をクリックします。

図 3-8 インストール完了

3.2.4 PCアプリの起動

PC アプリを起動するには、以下の順に選択します。 [スタートメニュー] → [プログラム] → [ネットワークリモート] → [ネットワークリ モート]

マスターアプリの起動には、プロテクションキーが必要です。PCのUSB端子に付属のプロ テクションキーを接続してから起動してください。

PC アプリはスタートアップにも登録されるため、PC の起動時にも自動的に起動します。 不要なときは削除してください。

PC 操作の優先順位は以下のようになります。

クライアントPC > マスターPC

上位 PC がネットワークに接続している場合、下位 PC での操作はできません。下位 PC の 操作が必要な場合は、上位 PC の接続を切断してから行ってください。

3.2.5 PCアプリの終了

PC アプリを終了するには、ウインドウ右上の[閉じる](×)をクリックします。 なお、ネットワークに接続している間は終了することができません。PC アプリを終了す る前に、[切断]をクリックしてください。

3.2.6 PCアプリのアンインストール

PC アプリをアンインストールするには、以下の順に選択します。 [スタートメニュー] → [コントロールパネル] → [アプリケーションの追加と削除] → [ネットワークリモート(クライアント)]または[ネットワークリモート(マスター)]

PC アプリをアップデートするときも、旧版のアンインストールが必要です。 アンインストールした場合でもプログラムフォルダ、測定データのファイルは残ります。 不要の場合は手動で削除してください。

3.3 LF 986、LF 985Aの設定

PCをネットワークに接続する前に、LF 986、LF 985Aの設定を行ってください。ネットワークに接続しているとき、LF 986、LF 985Aは操作できません。 LF 986、LF 985Aの詳細操作については、それぞれの取扱説明書を参照してください。

3.3.1 名称の設定

<u>PCアプリに表示されるLF 986、LF 985Aの名称は、内部メモリーの番号1に保存されてい</u>る設定の名前となります。(下図の場合、LEADER1_986)

 設定の呼出し(内部) 番号 名称 	選択 ↑
1:LEADER1_986 2: 3: 4:	
5: 6: 7:	表示内容 切換
8: 9: 10:	呼出し
内容: JHPAN VHF+UHF ● 27 + 84.3% * 1/ 28	

図 3-9 LF 986、LF 985A の名称

設定を保存するには、測定画面で以下の操作を行ってください。(保存する設定は何であっても構いません)

地上波·CATVマルチ測定		マルチ/シンク"ル
JAPAN VHF		/デジタル
CH VIDEO	91.25MHz	放送方式 選択
< 1 8 dBuV		
26		24°クトラム 表示
22		
20		
		<u>ታ አ</u> ም
▶ 27		• ~

図 3-10 測定画面

操作

F.5 ↓次 → F.3 設定保存 → F.1 内部メモリーへの保存 → 番号 1 を選択 → F.4 書 込み (→ F.1 はい) → F.2 名前を付ける → 名前を入力 → F.5 書込み

注意事項

・複数の機器を接続するとき、同一の名前を付けないでください。

- ・名前に「:」「*」「/」を含まないようにしてください。
- ・必ず名前を付けてください。無記入だと接続できません。

3.3.2 システム設定

システム設定の設定値を以下のとおりにします。

システム設定 <オートパワーオフ>	5分
オートパワーオフ 時間を選択してく ださい	-10分
	20分
現在の設定	60分
オフ(連続) ■	オフ(連続)

測定単位	
システム設定 <測定単位>	dBμV (75Ω負荷 OdBμV=1μV)
レベル測定の単位 を選択してくださ い	dBμVemf(75Ω開 放 0dBμV=1μV)
	dBmV (75Ω負荷 OdBmV=1mV)
現在の設定 dBμV (75Ω負荷 0dBμV=1μV)	dBmW (OdBmW=1mW)
▶	1

データ通信

システム設定 <データ通信>	Xパラメータ
通信の条件を設定 してください	データ長
現在の設定 Xハ [°] ラメータ無効	パリティービット
データ長8ビット パリティービットなし ストップビット1ビット	ストップビット
 ħ[*]-ν-ト19200 ₽ 	ボーレート

図 3-11 システム設定

表 3-1 システム設定

設定項目		設定値
オートパワーオフ		オフ(連続)
測定単位		dBμV
データ通信	X パラメータ	無効
	データ長	8ビット
	パリティービット	なし
	ストップビット	1ビット
	ボーレート	19200bps

※ CATV 周波数は、システム設定の「CATV チャンネル周波数」で選択した周波数に関わらず、PC アプ リの「CATV シフト周波数変更」で選択した周波数となります。

システム設定画面を表示するには、以下の操作を行ってください。

操作

14 IL				
MENU —	→ F.5	↓次 →	F. 4	システム設定

4. 各画面の名称と働き

4.1 接続先設定画面

この画面はクライアントアプリのみで使用します。

1	2
接続先設定 接続先1- 接続先2称	接続先 IP アドレス
C LEADER	255 , 255 , 255 , 255
- 接続先2- 接続先名称	接続先 IP アドレス 0 . 0 . 0 . 0
★ 接続先3 接続先名称 て 「	接続先 IP アドレス 0 、 0 、 0 、 0
─ 接続先 4	接続先 IP アドレス 0 . 0 . 0 . 0
- 接続先 5	接続先 IP アドレス 0 . 0 . 0 . 0
決	E ++>tu
3	4 I

図 4-1 接続先設定画面

表 4-1 接続先設定画面の	說明
----------------	----

番号	項目	説明
1	接続先名称	接続先の名称を半角 15 字以内で入力します。名称は 5 つまで設定でき、使
		用する接続先をラジオボタンで選択します。
2	接続先	接続先の IP アドレスを入力します。 IP アドレスは 5 つまで設定でき、使用
	IPアドレス	する接続先をラジオボタンで選択します。
3	決定	接続先を決定します。
4	キャンセル	接続先の設定をせずに、画面を閉じます。

4.2 機器検出画面

図 4-2 機器検出画面

衣 4-2 (成岙快山画山の記)	表	4-2	機器検出画面の説明
------------------	---	-----	-----------

番号	項目	説明
1	マスター	マスター側に接続されている機器の名称が表示されます。表示順は IP アド
		レス順となります。
2	スレーブ	スレーブはオプションです。
3	ダウンロード	クライアント PC がマスターPC から測定データをダウンロードします。
4	機器検出	接続している機器を検出します。
5	登録	接続している機器を登録します。
6	キャンセル	機器を登録せずに、画面を閉じます。

4.3 機器設定画面

表 4-3 機器設定画面の説明

番号	項目	説明
1	ー括取込み	接続しているすべての機器の設定を取り込みます。
2	一括送信	接続しているすべての機器へ設定を送信します。
3	機器名の表示	機器検出画面で検出された機器の名称が表示されます。
		タブを選択すると機器が切り換わります。
4	保存	選択している機器の設定を config ファイルとして保存します。設定を送信
		する前に保存することはできません。
5	開く	あらかじめ保存した設定を、選択している機器に呼び出します。
6	ロギング	チェックを入れると、選択している機器が測定対象となります。
		チェックを外すと、以降の項目が設定できません。
7	モニタ	チェックを入れると、測定画面に測定値を表示します。
8	MER/BER	チェックを入れると、測定モードが地上デジタルまたは CATV デジタルのと
		きに、MER/BER が測定できます。(※1)
9	測定間隔	測定間隔を設定します。クリックして設定箇所を決め、▲▼で値を設定し
		ます。設定範囲は、最低測定時間(次項参照)~23:59:59 です。
10	クリア	クリックすると、測定間隔が最低測定時間になります。
		最低測定時間は、MER/BER にチェックが入っているときは選択したチャンネ
		ルをすべて測定したときの時間、入っていないときは 00:00:10 です。
11	CATV 周波数シフト	チェックを入れると、C24~C27の周波数が-2MHz シフトします。
12	アナログ	測定モードをアナログ映像にしたときの、レベルのしきい値を設定しま
		す。測定値がこの値未満のとき、エラーとなります。設定範囲は 20~120dB
		μV です。

番号	項目	説明
13	デジタル	測定モードを地上デジタルまたは CATV デジタルにしたときの、レベルのし
		きい値を設定します。測定値がこの値未満のとき、エラーとなります。設
		定範囲は 35~120dBµV です。
14	地デジ	測定モードを地上デジタルにしたときの、MER と BER のしきい値を設定しま
		す。
		MER: 測定値がこの値未満のとき、エラーとなります。
		設定範囲は15~27dB です。
		BER: 測定値がこの値より大きいとき、エラーとなります。
		設定範囲は 7E-2~2E-8 です。
15	CATV	測定モードを CATV デジタルにしたときの、MER と BER のしきい値を設定し
		ます。LF 985A が接続されているときは設定できません。
		MER: 測定値がこの値未満のとき、エラーとなります。
		設定範囲は 20~35dB です。
		BER: 測定値がこの値より大きいとき、エラーとなります。
		設定範囲は 1E-2~1E-8 です。
16	取込み	選択している機器の設定を取り込みます。
17	送信	選択している機器へ設定を送信します。
18	СН	チェックを入れたチャンネルが、測定画面で表示されます。
19	測定モード	測定モードを以下から選択します。LF 985A が接続されているとき、CATV
		デジタルは選択できません。
		(アナログ映像/地上デジタル/CATV デジタル)
20	MER/BER	MER/BER を測定するかどうか選択します。(測定/非測定)
		MER/BER にチェックされていない場合、CH にチェックされていない場合、
		測定モードがアナログ映像の場合は、選択できません。

※1 チェックを外すとマルチ測定となり、測定時にはLF 986、LF 985Aに保存してある、すでに測定した データを表示します。

4.4 測定画面

図 4-4 測定画面

表 4-4 測定画面の説明

番号	項目	説明
1	接続先名称	接続先設定画面の「接続先名称」に入力した名称が表示されます。
		(クライアントアプリのみ)
2	IP アドレス表示	接続先設定画面の「接続先 IP アドレス」に入力した IP アドレスが表示さ
		れます。(クライアントアプリのみ)
3	接続開始/切断	ネットワークへの接続/切断を行います。
		ネットワークに接続中は「切断」、切断中は「接続開始」と表示されます。
4	接続先設定	接続先の設定をします。ネットワークに接続中は選択することができませ
		ん。(クライアントアプリのみ)
5	機器検出	機器検出をします。
6	機器設定	測定チャンネルなどの機器設定をします。
7	Version	PC アプリのバージョン情報を表示します。
		バージョン情報 FS3029 FS3029 Version 1.0 Copyright (C) 2008 by LEADER ELECTRONICS CORP. All Rights Reserved.
8	機器名の表示	機器設定画面の「ロギング」と「モニタ」にチェックを入れた機器の名称
		が表示されます。タブを選択すると機器が切り換わります。
9	日時表示	PCの日時が表示されます。LF 986、LF 986Aで設定した日時は反映されま
		せん。

番号	項目	説明
10	状況表示	状況に応じてメッセージが表示されます。以下はその一例です。
		・計測中
		・次の計測まで:HH:MM:SS
		・測定テーブルを構築しています
11	累計エラー回数	通信エラーが発生した回数が表示されます。機器設定を新たに送信する
		と、回数が0に戻ります。
		レベル、MER、BER エラーが発生しても、カウントされません。
12	計測間隔	機器設定画面の「測定間隔」で設定した時間が表示されます。
13	方式	機器設定画面の「測定モード」で選択したモードが表示されます。
		A:アナログ映像(背景をピンク色で表示)
		D:地上デジタル(背景を黄緑色で表示)
		C:CATV デジタル(背景をオレンジ色で表示)
14	СН	機器設定画面の「CH」でチェックを入れたチャンネルが表示されます。
15	レベル	レベルが表示されます。測定値が機器設定画面の「しきい値」で設定した
		値未満のとき、背景が赤色になりアラームが鳴ります。測定値が正常にな
		った後、セルをクリックするとエラーが解除されます。
16	MER	MER が表示されます。測定値が機器設定画面の「しきい値」で設定した値未
		満のとき、背景が赤色になりアラームが鳴ります。測定値が正常になった
		後、セルをクリックするとエラーが解除されます。
17	BER	BER が表示されます。測定値が機器設定画面の「しきい値」で設定した値よ
		りも大きいとき、背景が赤色になりアラームが鳴ります。測定値が正常に
		なった後、セルをクリックするとエラーが解除されます。

5. 使用方法

5.1 マスターPCの設定

マスターPCの設定は、使用する機器を接続してから行います。(「図 3-1 接続図」参照)

1. マスターアプリを起動します。

以下の画面が表示されます。

🛇 FS3029 ネットワークリモート マスター			
		L	Version
	接続開始	機器検出	機器設定
	接続開始ボタンを押して計測を開始して下さい		

図 5-1 接続開始画面

2. [接続開始]をクリックします。

前回測定時と同一の機器が接続されている場合は、測定画面になります。測定条件に変更がない場合、以降の設定は必要ありません。

初めて起動した場合や、前回測定時と異なる名称の機器が接続されている場合は、エラ 一画面が表示されます。[OK]をクリックしてください。

図 5-2 エラー画面

3. 機器検出画面が表示されたら、[機器検出]をクリックします。

○ FS3029 ネットワークリモート マスター			
			Version
	切断	機器検出	機器設定
機器検出を行ってくたる	ζ()		

図 5-3 機器検出画面

4. 機器検出画面が表示されたら、[機器検出]をクリックします。

機器検出	×
マスター	スレーブーー・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
未検出	未検出
▲ 2	- 機器 2
機器 3	- 機器 3
機器 4 未検出	
	- 機器 5
ダウンロード 機器検出	登録 キャンセル

図 5-4 機器検出画面

5. 測定動作停止確認画面が表示されたら、[はい]をクリックします。

[はい]をクリックすると、自動で機器を検出します。

測定動作	停止確認
	機器検出を行うと測定動作が中断します よろしいですか?
	<u> </u>

図 5-5 測定動作停止確認画面

6. 検出された機器を確認して、[登録]をクリックします。

機器は、割り当てられた IP アドレス順に表示されます。 【参照】「4.2 機器検出画面」

機器 1LEADER1_986	- 機器 1
機器 2	- 機器 2
LEADER2_986	未検出
機器 3	- 機器 3
LEADER3_985A	未検出
機器 4	- 機器 4
未検出	未検出
機器 5	- 機器 5
未検出	未検出

図 5-6 機器検出画面

7. 機器設定画面が表示されたら、[機器設定]をクリックします。

◇ FS3029 ネットワークリモート マスター				
		切助	機器検出	Version 機器設定
	機器設定を行ってください			

図 5-7 機器設定画面

8. 機器設定画面で、機器ごとに測定条件を設定します。

【参照】「4.3 機器設定画面」

審設定							
	1					一括取込み	一括送信
LEADERT_986	LEADE	R2_986	LEADER3	985A			
	÷		1.参口值				
	್ಷ ಲ್ಲಿ೫ ದ್ರಾ≍−ಶ (U COULE	_ MEE	REP		
保在	179 NE 129	MERV DER	- 01/10				即込み
加定間		00 🖻	アナログ 20 df	3 μ V 地デ	≈j 23 dB 2	E- 4	477207
			デジタル 35 dE	BHV CAT	TV 23 dB 2	E- 4	
開くその他							2초1言
CA	TV問波数シフト						
1015			11115			CAD(
VIIF			UHF			UMIV	
CH 測定モード	MER/BER		MER/	BER 🔺	CH 測定モ		IER/BER 🔺
	-	13 アナロク映		-		深 <u>▼</u>	<u> </u>
	<u> </u>	14 アナログ映	137. V 169. –	<u> </u>		家 💌	<u> </u>
	¥.	- 10 アフロン映 - 16 マーログ映	氷 <u>・</u>	÷ I		×ル/ ▼ 周定 50. ■ 測定	<u> </u>
	÷	□ 10 7 7 □ 5 岐 □ 17 〒 + □ ゲ 岐	像 •				÷
	· · · · · · · · · · · · · · · · · · ·	✓ 18 地上デジタ	100 - 測定	÷-	C187+D/5	☆ <u>・</u>	
7 アナログ映像 🔹		□ 19 アナログ映	像 •	•	C19アナログ映	19. V	-
▼ 8 アナログ映像 ▼	•	▼ 20 地上デジタ	ル ▼ 測定	-	□ C20 アナログ映	· · · · · · · · · · · · · · · · · · ·	-
□ 9 アナログ映像 🔻	-	21 地上デジタ	ル ▼ 測定	-	□ C21 アナログ映	像 🔻	-
🔽 10 アナログ映像 🔍	-	▼ 22 地上デジタ	ル 🔳 測定	-	C22アナログ映	像 ▼	•
🗆 11 アナログ映像 🗨	•	▶ 23 地上デジタ	ル 🔹 測定	-	C23アナログ映	像 💌	•
▼ 12 アナログ映像 🗨	•		ル 🗾 測定	-	C24アナログ映	像 💌	_
		✓ 25 地上デジタ	ル 🔽 測定	-	C25 アナログ映	像 💌	_
			ル 🗾 測定	•	C26アナログ映	僚 <u>▼</u>	<u> </u>
		▶ 27 地上デジタ	ル 🗾 測定	•	C27アナログ映	陳	-
		▶ 28 アナログ映	像 ▼	T	C28アナログ映	像 ▼	

図 5-8 機器設定画面

9. 機器設定画面で[送信](機器ごと)または[一括送信](すべての機器)をクリックします。 測定データが機器に送信されます。送信後、機器設定画面は閉じても構いません。

測定データが送信されると、測定画面で測定テーブルの構築が始まります。

										切断			機器設定
	LE	EADER1_986		LEAD	ER2_986			LEADERS	_985A	1			
	2009\$	革04月09日 1	7 : 04 : 36		主 テーブル	を構築	しています		累計エラー回答	数 0回	H	- 1911月1月月二月二日 - 1911月1月1月1日 - 1911月1日 - 1911 - 191	05 : 00
		,	VHF					UHF			C	ATV	
洰	CH	レベル	MER	BER	方式	CH	レベル	MER	BER	方式 CH	レベル	MER	BER
	0	and dD us (D D	18	dB µV	dB		C C15	dB μ.V	dB	
	4	dB 44 V			D	20	dB u V	dB		0 010	.= ub,4 V	-,- ub	
	6	dB #V			D	22	dB # V	dB					
	8	dB µV			D	23	dB #V	dB					
	10	dB µ V			D	24	dB # V	dB					
	12	dB µ V			D	25	dB # V	dB					
					D	26	dB # V	dB					
					D	27	dB µV	dB					

図 5-9 測定画面

測定テーブルの構築が終了すると、測定が始まります。

- ・ 測定中のチャンネルは、黄色く点滅します。
- ・ レベル、MER、BER がしきい値を超えると、セルが赤色になりアラームが鳴ります。
- ・ 測定したデータは、自動でマスターPCに保存されます。

【参照】「4.4 測定画面」「5.3 測定データについて」「5.4 アラーム」

LEADER2_986 LEADER3_985A 26 次の計測はで:00:00:48 累計エラー回数 0回 計測間第4:00:05:00 UHF CATV R BER 万式 CH レベル D 26 640 dB µ V 225 dB 0.00E+0 D 20 640 dB µ V 225 dB 0.00E+0 D 21 622 dB µ V 225 dB 0.00E+0 D 22 623 dB µ V 225 dB 0.00E+0 D 22 623 dB µ V 257 dB 0.00E+0 D 22 61 7 dB µ V 257 dB 0.0E+0 D 25 61 7 dB µ V 257 dB 0.0E+0 D 25 61 7 dB µ V 257 dB 0.0E+0 D 25 61 7 dB µ V 257 dB 0.0E+0 D 25 61 7 dB µ V 257 dB 0.0E+0 D 25 61 7 dB µ V 257 dB 0.0E+0 D 25 61 7 dB µ V 257 dB 0.0E+0	LEADER1,986 LEADER2,986 LEADER3,985A 2009年.04月.09日 16:37:26 次の計測球で:00:00:48 開計コラー回数 0回 計測問題:00:05:00 VHF UHF CATV 第1 862 84 20 1 862 84 00 00 3 861 048 225 00 00 4 943 98/0 00 00 00 00 2 634 84/V 255 00 <td< th=""></td<>
26 次の計測まで:00:00:48 累計エラー回肢 0回 計測問題:00:05:00 UHF CATV R BER 方式 CH レベルレ MER DER 方式 CH レベルレ MER DER C C15 763 dB µV 330 dB 0.00E+0 C C13 765 dB µV 330 dB 0.00E+0 C C15 763 dB µV 332 dB 0.00E+0 C C16 755 dB µV 332 dB 0.0E+0 D 21 62.9 dB µV 25.7 dB 0.0E+0 D 23 62.5 dB µV 25.7 dB 0.0E+0 D 25.6 dB 0.0E+0 D 25.7 dB 0.0E+0 D 25.7 dB 0.0E+0 D 25.6 dB 0.0E+0 D 25.6 dB 0.0E+0 D 25.6 dB 0.0E+0 D 25.7 dB 0.0E+0 </th <th>2009年 04月 09日 16:37:26 次の計測はで:00:00:48 累計エラー回数 0回 計測問題:00:05:00 VHF UHF CATV また、CH レベル MER BER 方式:CH レベル MER BER 1 862 dB AV 00 18<639 dB AV 225 dB 00E+0 D C15 763 dB AV 30 dB 00E+0 2 64 dB AV 0 12 629 dB AV 255 dB 00E+0 C C16 755 dB AV 30 dB 00E+0 1 815 dB AV 0 22 634 dB AV 256 dB 00E+0 0 24 613 dB AV 256 dB 00E+0 0 24 613 dB AV 256 dB 00E+0 0 0 0 24 613 dB AV 256 dB 00E+0 0</th>	2009年 04月 09日 16:37:26 次の計測はで:00:00:48 累計エラー回数 0回 計測問題:00:05:00 VHF UHF CATV また、CH レベル MER BER 方式:CH レベル MER BER 1 862 dB AV 00 18<639 dB AV 225 dB 00E+0 D C15 763 dB AV 30 dB 00E+0 2 64 dB AV 0 12 629 dB AV 255 dB 00E+0 C C16 755 dB AV 30 dB 00E+0 1 815 dB AV 0 22 634 dB AV 256 dB 00E+0 0 24 613 dB AV 256 dB 00E+0 0 24 613 dB AV 256 dB 00E+0 0 0 0 24 613 dB AV 256 dB 00E+0 0
BER 方式 CH L MER BER 方式 CH L MER BER D<18	VHF UHF CATV 1 862 dB µV 550 CH 1 × × 1/L MER BER C C15 76.3 dB µV 30.0 dB 0.0E+0 0 225 dB 0.0E+0 C C16 755 dB µV 32.6 dB 0.0E+0 0 226 dB 0.0E+0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
R BER 方式、CH レペジレ MER BER 方式、CH レペジレ MER BER D 18 639 dB μV 225 dB 00F-0 C15 763 dB μV 330 dB 00F+0 D 2 640 dB μV 255 dB 00F-0 C15 765 dB μV 330 dB 00E+0 D 2 629 dB μV 255 dB 00F-0 C C16 765 dB μV 326 dB 00E+0 D 2 623 dB μV 257 dB 00F-0 C C16 765 dB μV 326 dB 00F+0 D 2 623 dB μV 257 dB 00F-0 C C16 765 dB μV 326 dB 0F+0 D 2 617 dB μV 257 dB 00F+0 C C57 dB </th <th>式 CH レベル MER BER 1 862 dB AV D 18 639 dB AV 225 dB 00E+0 4 843 dB AV D 2 63 dB AV 256 dB 00E+0 6 831 dB AV D 2 63 dB AV 256 dB 00E+0 10 815 dB AV D 2 63 dB AV 256 dB 00E+0 11 8 639 dB AV 256 dB 00E+0 12 802 dB AV D 2 63 dB AV 256 dB 00E+0 12 802 dB AV D 2 63 dB AV 256 dB 00E+0 12 802 dB AV D 2 61 dB 00E+0 12 802 dB AV D 2 61 dB 00E+0 12 802 dB AV D 2 61 dB 00E+0 12 802 dB AV D 2 7 613 dB AV 251 dB 00E+0 12 802 dB AV D 2 7 613 dB AV 251 dB 00E+0 12 802 dB AV D 2 7 613 dB AV 251 dB 00E+0 14 80 26 dB 00E+0 15 617 dB AV 251 dB 00E+0 16 616 dB AV 259 dB 00E+0 17 802 dB AV D 2 7 613 dB AV 251 dB 00E+0 18 90 2 dB AV D 2 7 613 dB AV 251 dB 00E+0 19 77 613 dB AV 251 dB 00E+0</th>	式 CH レベル MER BER 1 862 dB AV D 18 639 dB AV 225 dB 00E+0 4 843 dB AV D 2 63 dB AV 256 dB 00E+0 6 831 dB AV D 2 63 dB AV 256 dB 00E+0 10 815 dB AV D 2 63 dB AV 256 dB 00E+0 11 8 639 dB AV 256 dB 00E+0 12 802 dB AV D 2 63 dB AV 256 dB 00E+0 12 802 dB AV D 2 63 dB AV 256 dB 00E+0 12 802 dB AV D 2 61 dB 00E+0 12 802 dB AV D 2 61 dB 00E+0 12 802 dB AV D 2 61 dB 00E+0 12 802 dB AV D 2 7 613 dB AV 251 dB 00E+0 12 802 dB AV D 2 7 613 dB AV 251 dB 00E+0 12 802 dB AV D 2 7 613 dB AV 251 dB 00E+0 14 80 26 dB 00E+0 15 617 dB AV 251 dB 00E+0 16 616 dB AV 259 dB 00E+0 17 802 dB AV D 2 7 613 dB AV 251 dB 00E+0 18 90 2 dB AV D 2 7 613 dB AV 251 dB 00E+0 19 77 613 dB AV 251 dB 00E+0
D 18 639 dB µV 225 dB 00E+0 C C15 763 dB µV 320 dB 00E+0 D 20 640 dB µV 256 dB 00E+0 C C16 755 dB µV 326 dB 00E+0 D 21 629 dB µV 259 dB 00E+0 D 22 634 dB µV 259 dB 00E+0 D 23 625 dB µV 257 dB 00E+0 D 24 618 dB µV 258 dB 00E+0 D 25 617 dB µV 257 dB 00E+0 D 25 617 dB µV 257 dB 00E+0 D 25 617 dB µV 257 dB 00E+0	1 862 dB μV D 18 639 dB μV 225 dB 0.00-0 C C15 76.5 dB μV 33.0 dB 0.00-0 3 861 dB μV D 20 64.0 dB μV 256 dB 0.00-0 C C15 76.5 dB μV 33.0 dB 0.00+0 4 84.3 dB μV D 21 62.9 dB μV 25.9 dB 0.00+0 C C16 75.5 dB μV 32.6 dB 0.00+0 6 831 dB μV D 22 63.4 dB μV 25.1 dB 0.00+0 D 25 62.6 dB μV 25.7 dB 0.00+0 D 25 62.7 dB 0.00+0 D 25 62.7 dB 0.00+0 D 25 63.8 dB μV 25.7 dB 0.00+0 D 25 61.7 dB μV 25.7 dB 0.00+0 D D 26 61.6 dB μV 25.7 dB 0.00+0 D D 27 61.3 dB μV 26.1 dB 0.00+0 D D D 26 61.6 dB μV 25.7 dB 0.00+0 D D
D 20 640 dBµV 256 dB 00E+0 D 21 629 dBµV 259 dB 00E+0 D 22 634 dBµV 269 dB 00E+0 D 22 634 dBµV 261 dB 00E+0 D 23 625 dBµV 257 dB 00E+0 D 24 618 dBµV 257 dB 00E+0 D 25 617 dBµV 257 dB 00E+0 D 25 617 dBµV 257 dB 00E+0	3 861 dB μV D 20 640 dB μV 256 dB 0.0E+0 C C16 755 dB μV 326 dB 0.0E+0 6 831 dB μV D 21 629 dB μV 259 dB 0.0E+0 25 68 0.0E+0 8 819 dB μV D 22 634 dB μV 251 dB 0.0E+0 25 68 0.0E+0 10 815 dB μV D 24 618 dB μV 258 dB 0.0E+0 25 67 755 dB μV 25 12 802 dB μV D 24 618 dB μV 258 dB 0.0E+0 25 61 dB μV 261 dB 0.0E+0 0 27 61 dB μV 261 dB 0.0E+0 25 0.0E+0 25 0.0E+0 0 27 61 dB μV 261 dB 0.0E+0 25 0.0E+0 25 0.0E+0
D 21 629 dB µV 256 dB 00E+0 D 22 634 dB µV 261 dB 00E+0 D 23 625 dB µV 261 dB 00E+0 D 24 618 dB µV 257 dB 00E+0 D 24 618 dB µV 257 dB 00E+0 D 25 617 dB µV 257 dB 00E+0 D 25 617 dB µV 257 dB 00E+0	4 843 dB μV D 21 62.9 dB μV 25.9 dB 0.0E+0 6 831 dB μV D 22 63.4 dB μV 26.1 dB 0.0E+0 10 815 dB μV D 23 62.5 dB μV 25.7 dB 0.0E+0 12 802 dB μV D 24 61.8 dB μV 25.7 dB 0.0E+0 D 24 61.8 dB μV 25.8 dB 0.0E+0 D 24 61.8 dB μV 25.9 dB 0.0E+0 D 26 61.6 dB μV 25.9 dB 0.0E+0 D 27 61.3 dB μV 26.1 dB 0.0E+0
D 22 634 db µV 251 db 000+0 D 23 625 db µV 257 db 000+0 D 24 618 db µV 257 db 000+0 D 25 617 db µV 257 db 000+0 D 25 617 db µV 257 db 000+0	b 831 dB μV D 22 634 dB μV 251 dB 00E+0 8 819 dB μV D 23 625 dB μV 257 dB 00E+0 10 815 dB μV D 24 618 dB μV 257 dB 00E+0 12 802 dB μV D 25 617 dB μV 257 dB 00E+0 D 26 616 dB μV 257 dB 00E+0 0 26 D 27 613 dB μV 251 dB 00E+0 0 27 613 dB μV 261 dB 00E+0
D 23 025 042 4V 257 04B 000E+0 D 24 618 048 4V 258 04B 000E+0 D 25 617 049 4V 258 04B 000E+0 D 25 617 049 4V 257 04B 000E+0	8 819 dB µV D 23 625 dB µV 25,7 dB 00E-0 10 815 dB µV D 24 618 dB µV 256 dB µV 256 dB µV 12 802 dB µV D 25 61.7 dB µV 257 dB 00E-0 D 25 61.6 dB µV 25.9 dB 00E-0 D 27 61.3 dB µV 26.1 dB 00E+0
D 24 018 dB 2V 208 dB 000+0 D 25 617 dB 2V 257 dB 000+0 D 26 616 dB 2V 257 dB 000+0	10 81.5 dB μV D 24 61.8 dB μV 25.8 dB 0.00±0 12 80.2 dB μV D 25 61.7 dB μV 25.7 dB 0.00±0 D 26 61.6 dB μV 25.9 dB 0.00±0 D 27 61.3 dB μV 25.1 dB 0.00±0
	D 25 61/36 AV 259 66 00E-0 D 27 613 dB V 259 68 00E-0 D 27 613 dB V 261 dB 00E-0
	D 27 613 dB #V 261 dB 00E+0
D 27 61.3 dB µV 26.1 dB 0.0E+0	

図 5-10 測定画面

5.2 クライアントPCの設定

<u>クライアントPCをネットワークに接続するには、マスターPCでマスターアプリが起動してい</u>ることが必要です。クライアントPCの設定は、マスターPCの設定後に行ってください。

1. クライアントアプリを起動します。

接続先が設定済みの場合は、[接続開始]をクリックしてください。(「手順3」参照)

初めて起動した場合や、接続先が未設定の場合は、以下の画面が表示されます。 [接続先設定]をクリックしてください。

鳥 FS3029 ネットワークリモート クライアント				- X
				Version
接続先名	0.0.0.0	接続開始 接続先設定	機器検出	機器設定
		k.		
	接続先を設定して	に下さい		

図 5-11 接続先設定画面

2. 接続先設定画面で接続先を設定して、[決定]をクリックします。

接続先は5つまで設定することができます。使用する接続先をラジオボタンで選択します。

接続先設定	X
─ 接続先 1 ───────────────────────────────────	接続先 IP アドレス 255 ,255 ,255 ,255
─ 接続先 2 ───────────────────────────────────	接続先 IP アドレス 0 , 0 , 0 , 0
	接続先 IP アドレス 0 , 0 , 0 , 0
	接続先 IP アドレス 0 、 0 、 0 、 0
	接続先 IP アドレス
	決定 キャンセル

図 5-12 接続先設定画面

3. 接続開始画面が表示されたら、[接続開始]をクリックします。

マスターアプリで検出していない機器が接続されているとき、ここでエラーが表示され ることがあります。そのときはクライアントアプリで機器検出を行ってください。

💻 FS3029 ネットワークリモート クライアン	• · · · · · · · · · · · · · · · · · · ·			
				Version
LEADER	255 . 255 . 255 . 255	接続開始 接続先設定	根器検出	機器設定
	接続ボタンを押して LEA	DER と接続を開始して下さい		

図 5-13 接続開始画面

測定画面が表示されます。

- ・ 測定中のチャンネルは、黄色く点滅します。
- ・ レベル、MER、BER がしきい値を超えると、セルが赤色になりアラームが鳴ります。
- この画面で[機器設定]をクリックすると、マスターアプリと同様に測定条件を設定 することができます。クライアントPCで設定した内容は、マスターPCにも反映さ れます。
- ・ クライアントPCで接続中は、マスターアプリで各種操作をすることができません。

【参照】	14.4	測定画面」	15.3	測定デ-	ータにつし	いて」	15.4	アラー	-7]
------	------	-------	------	------	-------	-----	------	-----	-----

530	29 ネ	ットワークリモー	ト クライアン	ŀ										E E
														Version
		LEADER		255	. 255	i. 2	55.255		切断	接続分	も設定	機器	検出	機器設定
LEADER1_986				LEADE	R2_986		1	LEADER3	_985A	1				
2009年 04月 13日 15:25:20				次(次の計測まで:00:00:47				累計エラー回数 0回			計測間隔:00:05:00		
VHF								UHF					CATV	
方式	CH	レベル	MER	BER	方式	CH	レベル	MER	BER	方式	CH	レベル	MER	BER
A	1	85.6 dB µ V			D	18	63.9 dB µ V	24.5 dB	0.0E+0	C	C15	76.5 dB µ V	33.2 dB	0.0E+0
A	3	86.2 dB # V			D	20	64.1 dB µ V	25.6 dB	0.0E+0	C	C16	75.5 dB µ V	32.8 dB	0.0E+0
A	4	84.3 dB µ V			D	21	62.8 dB µ V	25.7 dB	0.0E+0					
A	6	83.2 dB # V			D	22	63.4 dB µ V	26.1 dB	0.0E+0					
A.	8	81.8 dB # V			D	23	62.5 dB µ V	25.6 dB	0.0E+0					
A	10	81.4 dB # V			UD	24	61.6 dB µ V	25.4 dB	0.0E+0					
H	12	80.1 dB /4 V			10	25	61.7 dB // V	25.8 dB	0.0E+0					
						20	61.0 dB /4 V	20.8 dB	0.0E+0					

図 5-14 測定画面

5.3 測定データについて

測定画面で測定したデータは、マスターPCに自動的に保存されます。また、マスターPCに 保存した測定データを、クライアント PC にダウンロードすることもできます。

5.3.1 マスターPCの測定データ

測定したデータは、マスターPCのMeasureフォルダに自動的に保存されます。 Measureフォルダには1日単位でフォルダが作成され、さらにその下には機器ごとのファ イルが作成されます。

【参照】「5.3.3 ファイルのフォーマット」

- ♀ ローカル ディスク(C∶)
- 🗆 🗁 Program Files
 - ∟ 🗗 FS3029
 - └ 🛱 ネットワークリモート(マスター)
 - ⊢ 🗖 Logging
 - ⊢ 🗁 Measure
 - $| \square \square YYY-MM-DD$ (\gg 1)

 - └ └ 機器 1 (Error). csv (※2)
 - └ 🗋 Setting
- ※1 西暦-月-日の順に作成され、31 個(1 ヶ月)まで保存されます。それ以降は、古い日付のフォルダが 順次削除されます。
- ※2 「機器 1」の部分には、LF 986、LF 985A で付けた名前が表示されます。1つの機器につき、3つの ファイルが作成されます。

5.3.2 測定データのダウンロード

マスターPCに保存されたデータをクライアントPCにダウンロードするには、測定画面で [機器検出]をクリックします。

機器検出画面が表示されたら、[ダウンロード]をクリックしてください。

伏器検出 マスター 「桜器1 「桜器1 」 「 桜器1 」 「 桜 「 桜 桜 」 「 桜 」 「 桜 ば 」 、	スレープーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーー
LEADER1_986	未検出
一機器 2 LEADER2_986	- 猥器 2
- 機器 3	- 機器 3
- 機器 4 未検出	- 機器 4
- 機器 5	- 機器 5
ダウンロード 機器検出	登録 キャンセル

図 5-15 機器検出画面

マスターPC の Measure フォルダ内のデータが、クライアント PC の同フォルダ内にダウン ロードされます。データ量によっては、ダウンロードに時間がかかる場合があります。

データは、前回ダウンロードしたときからの差分のみがダウンロードされます。マスター PC に保存されているすべてのデータをダウンロードしたいときは、Measure フォルダ内の 「Catalog. dat」を削除してからダウンロードしてください。

```
♀ ローカル ディスク (C:)
```

└ 🗁 Program Files

└ 🗁 FS3029

- └ 🖸 ネットワークリモート(クライアント)
 - ⊢ 🗋 Logging
 - ⊢ 🗁 Measure
 - | |- 🗁 YYYY-MM-DD
 - │ │ │ │ [│] 機器 1 (Detail). csv
 - │ │ │ │ │ 🛛 機器 1 (Summary).csv
 - | | └ □ 機器 1(Error).csv
 - | 🕒 🗋 Catalog. dat
 - └ 🗋 Setting

5.3.3 ファイルのフォーマット

測定データは、1つの機器につき以下の3つのファイルで保存されます。それぞれのファ イルについて説明します。

- ・機器1(Detail).csv
- ・機器1(Summary).csv
- ・機器1(Error).csv

● Detail ファイル(抜粋)

全チャンネルのデータです。

日付	時刻	機器番号	機器名称	VHF							
				01CH				02CH			
				放送方式	LEVEL	MER	BER	放送方式	LEVEL	MER	BER
2009/4/9	16:08:51	0	LEADER1_986	Α	1	0	0	Α	0	0	0
2009/4/9	16:13:52	0	LEADER1_986	Α	1	0	0	Α	0	0	0
2009/4/9	16:28:13	0	LEADER1_986	Α	83.2	0	0	Α	0	0	0
2009/4/9	16:32:18	0	LEADER1_986	Α	83.3	0	0	Α	0	0	0
2009/4/9	16:37:13	0	LEADER1_986	Α	86.2	0	0	Α	0	0	0
2009/4/9	16:42:10	0	LEADER1_986	Α	86.1	0	0	Α	0	0	0
2009/4/9	16:55:14	0	LEADER1_986	Α	85.9	0	0	Α	0	0	0
2009/4/9	17:07:00	0	LEADER1_986	Α	85.6	0	0	Α	0	0	0

18CH				19CH				20CH			
放送方式	LEVEL	MER	BER	放送方式	LEVEL	MER	BER	放送方式	LEVEL	MER	BER
D	29.7	0	0	Α	0	0	0	D	21.6	0	0
D	25.3	0	0	Α	0	0	0	D	21.6	0	0
D	82.6	25.4	1.90E-06	Α	0	0	0	D	61.8	25.1	0.00E+00
D	83. 2	24.7	2.70E-06	Α	0	0	0	D	62.1	25.3	0.00E+00
D	63.9	22.5	0.00E+00	Α	0	0	0	D	64	25.6	0.00E+00
D	63.9	22.8	0.00E+00	Α	0	0	0	D	63.9	26.1	0.00E+00
D	63.6	22.5	0.00E+00	Α	0	0	0	D	63.8	25.8	0.00E+00
D	63.5	23.3	0.00E+00	Α	0	0	0	D	63.8	25.8	0.00E+00

表 5-1 Detail ファイルの説明

項目	説明
日付、時刻	測定が終了したときの、マスターPCの日時が表示されます。
機器番号	機器 1~5 が、0~4 で表示されます。
機器名称	LF 986、LF 985A で付けた名前が表示されます。
放送方式	機器設定画面で設定した測定モードが表示されます。
	A:アナログ映像、D:地上デジタル、C:CATV デジタル
LEVEL、MER、BER	各測定値が表示されます。
	測定していないチャンネルの測定値は0になります。
	LEVEL と MER では、LF 986、LF 985A での測定値が OVER の場合は 255、
	UNDER の場合は1になります。
	測定モードが地上デジタルまたは CATV デジタルで、MER/BER を測定して
	いる場合、UNLOCK だと MER が 0、BER が「」となります。

● Summary ファイル(抜粋)

測定チャンネルのみのデータです。各項目についての説明は、Detail ファイルを参照してください。

日付 時刻 機器畨号 機器名称 VH-	
01CH 03CH 03CH	
放送方式 LEVEL MER 放送方式 LEVEL MER	BER
2009/4/9 16:28:13 0 LEADER1_986 A 83.2 0 0 A 86	0
2009/4/9 16:32:18 0 LEADER1_986 A 83.3 0 0 A 86.1	0
2009/4/9 16:37:13 0 LEADER1_986 A 86.2 0 0 A 86.1	0
2009/4/9 16:42:10 0 LEADER1_986 A 86.1 0 0 A 86.2	0

UHF											
18CH				20CH				21CH			
放送方式	LEVEL	MER	BER	放送方式	LEVEL	MER	BER	放送方式	LEVEL	MER	BER
D	82.6	25.4	1.90E-06	D	61.8	25.1	0.00E+00	D	82.6	2.6	0.00E+00
D	83.2	24.7	2.70E-06	D	62.1	25.3	0.00E+00	D	82.9	2.6	0.00E+00
D	63.9	22.5	0.00E+00	D	64	25.6	0.00E+00	D	62.9	25.9	0.00E+00
D	63.9	22.8	0.00E+00	D	63.9	26.1	0.00E+00	D	62.8	25.7	0.00E+00

● Error ファイル

エラーが発生したチャンネルのみのデータです。

日付	時刻	機器名称	チャンネル	放送方式	アラーム種類	LEVEL	MER	BER
2009/4/9	16:13:52	LEADER1_986	C16	C	L	24.8		
2009/4/9	16:25:11	LEADER1_986	C15	C	M:B	39.8	0	
2009/4/9	16:28:13	LEADER1_986	C16	C	L:M:B	26.1	0	
2009/4/9	16:33:38	LEADER1_986	U18	D	Μ	63.9	22.5	0.00E+00
2009/4/9	16:38:42	LEADER1_986	U18	D	Μ	63.9	22.8	0.00E+00
2009/4/9	16:46:25	LEADER1_986	U18	D	Μ	63.7	22.5	0.00E+00
2009/4/9	16:51:34	LEADER1_986	U18	D	Μ	63.6	22.5	0.00E+00

表 5-2 Error ファイルの説明

項目	説明
日付、時刻	エラーが発生したときの、マスターPCの日時が表示されます。
機器名称	LF 986、LF 985A で付けた名前が表示されます。
チャンネル	エラーが発生したチャンネルが表示されます。
放送方式	機器設定画面で設定した測定モードが表示されます。
	A:アナログ映像、D:地上デジタル、C:CATV デジタル
アラーム種類	エラーが発生した測定項目が表示されます。測定項目が複数ある場合は、
	コロン(:)で区切って表示されます。
	L:レベル、M:MER、B:BER
LEVEL、MER、BER	各測定値が表示されます。

5.4 アラーム

通信エラーや測定エラーが発生したとき、PCからアラームが鳴ります。アラームを無効に する設定はありません。

● 通信エラー (クライアントのみ)

クライアントPCで通信エラーが発生すると、「ピルルルッ、ピルルルッ・・」という アラームが鳴ります。このアラームは、正常に通信が行われるまで鳴り続けます。

創定エラー(マスター、クライアント両方)

レベル、MER、BER、にエラーが発生すると、「ポーン、ポーン・・」というアラーム が鳴ります。このアラームは、測定値が正常になり、エラーを解除するまで鳴り続けま す。ここでは 18CH の MER にエラーが発生したときの例について説明します。

エラーが発生すると18CH MERのセルが赤色になり、アラームが鳴ります。

UHF						
方式	CH	レベル	MER	BER		
D	18	63.9 dB µ V	22.5 dB	0.0E+0		
D	20	64.0 dB µ V	25.6 dB	0.0E+0		
D	21	62.9 dB µ V	25.9 dB	0.0E+0		

図 5-16 エラー発生

次回測定時に MER が正常値になっても、18CH MER のセルは赤色のままです。また、ア ラームは鳴り続けます。

UHF						
方	式 CH	レベル	MER	BER		
D	18	63.9 dB µ V	25.5 dB	0.0E+0		
D	20	64.0 dB µ V	25.6 dB	0.0E+0		
D	21	62.9 dB µ V	25.9 dB	0.0E+0		

図 5-17 再測定

18CH MER のセルをクリックすると、エラーが解除されてアラームが止まります。なお、 測定中はクリックしてからエラーが解除されるまで、若干の時間がかかることがありま す。

UHF						
方式	CH	レベル	MER	BER		
D	18	63.9 dB µ V	25.5 dB	0.0E+0		
D	20	64.0 dB µ V	25.6 dB	0.0E+0		
D	21	62.9 dB µ V	25.9 dB	0.0E+0		

図 5-18 エラー解除