LV 5330
 MULTI SDI MONITOR

INSTRUCTION MANUAL

Contents

GENERAL SAFETY SUMMARY

1. Introduction 1
1.1 Scope of Warranty 1
1.2 Handling Precautions 1
1.2.1 Power Supply Voltage 1
1.2.2 Maximum Allowable Input Voltage 2
1.2.3 Shorting and Applying External Input to the Output Connectors 2
1.2.4 Mechanical Shock 2
1.2.5 Electrostatic Damage 2
1.2.6 Warming Up 2
1.2.7 USB Memory Devices 2
1.2.8 Trademark Acknowledgments 2
2. Specifications 3
2.1 Product Overview 3
2.2 Features 3
2.3 Specifications 6
2.3.1 Video Signal Formats and Corresponding Standards 6
2.3.2 Audio Playback 6
2.3.3 Input/Output Connectors 7
2.3.4 Control Connectors 8
2.3.5 LCD 8
2.3.6 Display Modes 8
2.3.7 Screen Capture 9
2.3.8 Presets 9
2.3.9 Video Signal Waveform Display 9
2.3.10 Vector Display 10
2.3.11 5 Bar Display 11
2.3.12 Phase Difference Display 11
2.3.13 Picture Display 11
2.3.14 CINELITE Display 12
2.3.15 CINEZONE Display 13
2.3.16 Audio Display 13
2.3.17 Status Display 14
2.3.18 View Finder Display 15
2.3.19 Front Panel 15
2.3.20 Rear Panel 15
2.3.21 General Specifications 16
3. Component Names and Functions 17
3.1 Front Panel 17
3.2 Rear Panel 19
3.3 Top and Bottom Panels 20
4. Before You Begin Measuring 21
4.1 Attaching the Ferrite Cores 21
4.2 Preparing the Power Supply 22
4.2.1 Attaching the DC Power Cord 22
4.2.2 Turning On the Power 22
4.2.3 Turning Off the Power 22
4.3 Applying SDI Input Signals 23
4.4 Transmitting an SDI Output Signal 24
4.5 Applying a Composite Video Signal 24
4.6 Applying an External Sync Signal 24
4.7 Using a Tripod 26
4.8 Using a VESA Stand 26
4.9 General Display Explanation 27
4.10 Basic Menu Operations. 30
5. System Settings 31
5.1 Setting the Input Format 31
5.1.1 Setting the Input Format Detection Method 31
5.1.2 Selecting i or PsF 32
5.1.3 Setting the Input Format 32
5.1.4 Selecting a Link Format 33
5.1.5 Setting the Composite Display Format 33
5.2 Selecting the Monitor's Color Temperature 33
5.3 Display Settings 34
5.3.1 Displaying the Input Format 34
5.3.2 Selecting the Date Display Format 34
5.3.3 Selecting the Time Display Format 35
5.3.4 Displaying the Color System 35
5.3.5 Selecting the Timecode Display Format 35
5.3.6 Setting the Backlight Brightness 36
5.3.7 Setting the Backlight Auto Shutoff Time 36
5.3.8 Displaying the Amount of Remaining Battery Power. 36
5.3.9 Lighting the Key LEDs 37
5.4 Configuring the External Interface 37
5.4.1 Selecting the Method for Loading Presets 37
5.4.2 Configuring Ethernet Settings 38
5.4.3 Setting the SNMP Mode 38
5.4.4 Configuring License Settings 39
5.5 Setting the Date and Time 40
5.6 Assigning a Function to the SHORT CUT Key 40
5.7 Initialization 41
5.7.1 Initializing the Settings Using SETUP INIT 42
5.7.2 Initializing the Settings by Restarting the LV 5330 42
6. Presets 43
6.1 Registering Presets 43
6.2 Loading Presets 44
6.3 Deleting Presets 45
6.4 Copying Presets 45
6.5 Copying All Presets 46
6.5.1 Copying Presets from USB Memory to the LV 5330 46
6.5.2 Copying Presets from the LV 5330 to USB Memory 46
7. Screen Capture Feature 47
7.1 Taking a Screen Capture of the Display 48
7.2 Displaying Screen Capture Data on the LV 5330 48
7.3 Saving Screen Capture Data to USB Memory 49
7.4 Viewing Screen Capture Data from USB Memory 50
7.5 Deleting Screen Capture Data from USB Memory 51
8. Picture Display 52
8.1 Picture Display Explanation 52
8.2 Setting the Brightness and Contrast 53
8.2.1 Adjusting the Brightness 53
8.2.2 Adjusting the Contrast 53
8.3 Marker Settings 54
8.3.1 Displaying an Aspect Marker 54
8.3.2 Displaying a Safe Action Marker 55
8.3.3 Displaying a Safe Title Marker 55
8.3.4 Displaying a Center Marker 56
8.3.5 Shading the Area Outside of an Aspect Marker 56
8.4 Line Selection Settings 57
8.4.1 Displaying a Marker on the Selected Line 57
8.4.2 Selecting a Line 57
8.4.3 Setting the Line Selection Range 58
8.5 Other Settings 58
8.5.1 Displaying Closed Captions 59
8.5.2 Selecting the Closed Caption Format 59
8.5.3 Displaying Gamut Errors 59
8.6 Display Settings 60
8.6.1 Selecting the Picture Display Size 60
8.6.2 Turning R, G, and B ON or OFF 62
8.6.3 Displaying Squeezed Images 62
8.6.4 Performing IP Conversion 62
8.7 Adjusting the Chroma Gain 63
8.8 Adjusting the Aperture 63
9. CINELITE Display 64
9.1 Selecting the Points to Measure 64
9.2 Moving the Cursors 65
9.3 Selecting the Measurement Area 66
9.4 Selecting the Points to Display 66
9.5 Displaying Luminance Levels as f Stop Numbers 67
9.6 Displaying Luminance Levels as Percentages or RGB Values 69
9.7 Displaying Synchronized Markers 71
9.8 Configuring User-Defined Correction Tables 72
9.8.1 Creating User-Defined Correction Tables Using the LV 5330 72
9.8.2 Loading a User-Defined Correction Table into the LV 5330 75
10. CINEZONE Display 78
10.1 Switching between the CINEZONE and Level Search Displays 78
10.2 CINEZONE Display 79
10.2.1 Selecting the Color Gradation 80
10.2.2 Superimposing the CINELITE Display 80
10.2.3 Configuring the CINELITE Display 81
10.2.4 Setting the Color 81
10.3 Level Search Display 82
10.3.1 Setting the Search Level 82
11. Video Signal Waveform Display 83
11.1 Video Signal Waveform Display Explanation 83
11.2 Display Position Settings 84
11.2.1 Setting the Vertical Position 84
11.2.2 Setting the Horizontal Position 84
11.3 Intensity Settings 84
11.3.1 Setting the Video Signal Waveform Intensity 84
11.3.2 Setting the Scale Intensity 85
11.4 Gain and Filter Settings 85
11.4.1 Selecting the Fixed Gain 85
11.4.2 Setting the Variable Gain 86
11.4.3 Selecting a Filter 86
11.5 Sweep Settings 88
11.5.1 Selecting the Sweep Method 88
11.5.2 Selecting the Line Display Sweep Time 89
11.5.3 Selecting the Field or Frame Display Sweep Time 89
11.5.4 Selecting Which Field to Display 90
11.5.5 Selecting the Horizontal Magnification 90
11.6 Line Selection Settings 92
11.6.1 Displaying the Waveform of the Selected Line 92
11.6.2 Selecting a Line 92
11.6.3 Setting the Line Selection Range 93
11.7 Cursor Settings 93
11.7.1 Displaying Cursors. 93
11.7.2 Selecting the Cursor Type 94
11.7.3 Moving the Cursors 94
11.7.4 Setting the Units of Measurement 95
11.7.5 Setting the Base Value 95
11.8 Color System Settings 96
11.8.1 Selecting the Display Format 96
11.8.2 Displaying the GBR or RGB Signal Simultaneously with the Luminance Signal 97
11.8.3 Selecting the Waveform Colors 98
11.8.4 Setting the Setup Level 98
11.9 Scale Settings 99
11.9.1 Selecting the Scale Unit 99
11.9.2 Displaying a Scale for 75 \% Color Bars 101
11.9.3 Changing the Scale Color 101
11.10 Displaying the Blanking Interval 102
11.11 Setting the Display Mode to TIMING 102
11.12 Switching the Display Mode 103
11.13 Turning $\mathrm{YC}_{\mathrm{B}} \mathrm{C}_{\mathrm{R}}$; GBR; and RGB Channels On and Off 104
12. Vector Display 105
12.1 Vector Display Explanation 105
12.2 Vector and Scale Settings 106
12.2.1 Setting the Vector Intensity 106
12.2.2 Setting the Scale Intensity 106
12.2.3 Displaying the I and Q Axes 107
12.2.4 Changing the Scale Color 107
12.2.5 Displaying the Vector Marker 108
12.3 Gain Settings 109
12.3.1 Selecting the Fixed Gain 109
12.3.2 Setting the Variable Gain 109
12.4 Line Selection Settings 110
12.4.1 Displaying the Vectors of the Selected Line 110
12.4.2 Selecting a Line 111
12.4.3 Setting the Line Selection Range 111
12.5 Color System Settings 112
12.5.1 Selecting the Display Format 112
12.5.2 Setting the Setup Level. 113
12.5.3 Displaying a Scale for 75 \% Color Bars 113
12.6 Switching between the Vector, 5 Bar, and Phase Difference Displays 114
12.7 5 Bar Display 114
12.7.1 5 Bar Display Explanation 114
12.7.2 Selecting the 5 Bar Display Unit 115
12.8 Phase Difference Display 116
12.8.1 Explanation of the Phase Difference Display 116
12.8.2 Setting the Phase Difference Memory Number 118
12.8.3 Recording the Current Phase Difference 119
12.8.4 Deleting Recorded Phase Differences 119
12.8.5 Setting the Current Phase Difference to Zero 119
12.8.6 Initializing the Phase Difference Settings 119
13. Audio Display 120
13.1 Audio Display Explanation 120
13.2 Selecting the Display Mode 121
13.3 Selecting Which Channels to Measure 122
13.4 Channel Mapping Settings 123
13.5 Meter Settings 124
13.5.1 Setting the Reference Level 124
13.5.2 Setting the Range 124
13.5.3 Selecting the Scale 125
13.5.4 Setting the Peak Value Hold Time 125
13.5.5 Meter Settings Overview 126
13.6 Headphone Settings 127
13.6.1 Turning Headphone Output On and Off 127
13.6.2 Adjusting the Headphone Volume 127
13.6.3 Selecting the Headphone Jack Output Channels 128
14. Status Display 129
14.1 Status Display Explanation 129
14.2 Event Log Settings 132
14.2.1 Event Log Explanation 133
14.2.2 Scrolling through the Event Log 135
14.2.3 Starting Event Logging 135
14.2.4 Deleting the Event Log 135
14.2.5 Setting the Event Log Overwrite Mode 135
14.2.6 Saving the Event Log to USB Memory 136
14.2.7 Deleting Event Logs in USB Memory 136
14.3 Data Dump Settings 137
14.3.1 Data Dump Explanation 137
14.3.2 Selecting the Data Dump Display Mode 138
14.3.3 Selecting the Data Dump Display Format 139
14.3.4 Selecting the Data Dump Display Start Position 140
14.3.5 Selecting Data Dump Lines and Samples 140
14.3.6 Saving a Data Dump to USB Memory 141
14.3.7 Deleting Data Dumps in USB Memory 141
14.4 Audio Status Settings 142
14.4.1 Audio Status Display Explanation 142
14.4.2 Selecting Which Channels to Display 143
14.5 Ancillary Packet Settings 144
14.5.1 Explanation of the Ancillary Packet Display 144
14.5.2 EDH Packet Display Explanation 146
14.5.3 Format ID Display Explanation 148
14.5.4 Subtitle Packet Display Explanation 150
14.5.5 Inter-Stationary Control Signal Display Explanation 152
14.5.6 EIA-708 Data Display Explanation 154
14.5.7 EIA-608 Data Display Explanation 155
14.5.8 Program Data Display Explanation 155
14.5.9 VBI Data Display Explanation 156
14.6 Error Settings 156
14.6.1 Selecting the Alarm Signal Polarity 156
14.6.2 Selecting the Error Count Rate 157
14.6.3 Configuring Error Detection Settings 157
14.6.4 Setting the Gamut Filter 161
14.6.5 Setting the Detection Level Unit 161
14.6.6 Setting Gamut Error Detection Levels 162
14.6.7 Setting Composite Gamut Error Detection Levels 163
14.6.8 Selecting the Error Display Format 164
14.7 Resetting Errors 164
15. View Finder Display 165
15.1 Adjusting the Brightness 165
15.2 Adjusting the Contrast. 165
15.3 Adjusting the Chroma Gain 166
15.4 Adjusting the Aperture 166
16. Multi-Screen Display Feature 167
16.1 Selecting the Multi-Screen Display Format 167
16.2 Setting Each Measurement Mode 169
16.3 Selecting the Displayed Contents in 4 SCREEN Display Mode 169
17. External Interface 170
17.1 Remote Control Feature 170
17.1.1 Remote Control Connector Specifications 170
17.1.2 Loading Presets 171
17.1.3 Transmitting Alarm Signals 171
17.1.4 Displaying a Tally Light 171
17.2 TELNET 172
17.2.1 Procedure 172
17.2.2 How to Enter Commands 173
17.2.3 TELNET Commands 173
17.3 FTP 179
17.3.1 Procedure 179
17.3.2 How to Enter Commands 179
17.3.3 FTP Commands 180
17.4 SNMP 181
17.4.1 Procedure 181
17.4.2 MIB 181
17.4.3 Standard MIB 182
17.4.4 Enterprise MIB 187
17.4.5 Specific Trap 203
17.4.6 Variable Binding List 204
18. Calibration and Repairs 205
19. APPENDIX 206
19.1 Menu Tree 206
19.1.1 Picture Menu 206
19.1.2 CINELITE Menu. 207
19.1.3 CINEZONE Menu 208
19.1.4 Video Signal Waveform Menu 208
19.1.5 Vector Menu 210
19.1.6 Multi-Screen Display Menu (Audio Menu) 211
19.1.7 Status Menu 212
19.1.8 View Finder Menu 215
19.1.9 Screen Capture Menu 215
19.1.10 System Menu 216
19.1.11 Preset Registration Menu 218
19.1.12 Preset Menu 218
19.2 FIRMWARE REVISION HISTORY

Index

GENERAL SAFETY SUMMARY

- To Avoid Personal Injury

It is recommended that only qualified personnel with technical knowledge use this instrument only after reading and fully understanding all functions of the instrument described this instruction manual.

This instrument is not designed and manufactured for consumers.
If you do not have enough knowledge on electricity, to avoid personal injury and prevent damage to this product, please be sure to use this product only under the supervision of an engineer who has sufficient knowledge about electronics.

- Note about Reading This Manual

Should you find the contents in this manual and any of its technical terms confusing, please feel free to contact your local LEADER agent.

- Symbols and Terms

Following terms and symbols indicate necessary warnings and cautions used in this manual and on the product are there for safe operation.

$<$ Symbol $>$	The sections where this symbol is marked in this manual or instrument, if not correctly performed or practiced, could result in personal injury or cause serious danger to the instrument. Misuse could also produce unintentional movement to create an operational impediment on the instrument or other products that might be connected to it. Be sure to refer to the safety precautions in this manual to safely use the part of the instrument where the symbol is marked.
$<$ Term $>$	Warning statements identify warning conditions that if disregarded or not correctly performed or adhered to, could result in serious personal injury or even loss of life.
CTerm $>$	Caution statements identify caution conditions that if disregarded or not correctly performed or adhered to, could result in personal injury or damage to the instrument.

GENERAL SAFETY SUMMARY

Review the following safety precautions to avoid operator's injury and loss of life and prevent damage and deterioration to this instrument. To avoid potential hazards, use this product as specified.

WARNING

- Warnings about the Case and Panels

Operator should not remove any cases or panel for any reasons. If you touch inside the instrument it could result personal shock or fire hazard. Refrain from spilling any liquid on or inserting anything flammables or piece of metal into the ventilation of the instrument. Such actions could cause fire, shock, malfunction and be an accident hazard while the power is on.

- Warnings about the Power Source

This instrument works in the DC power supply, and uses an accessory AC adaptor. There is danger of the product malfunction and a fire when things other than specification are used.

- Warnings about the Installation Environment
- Operating Temperature Range

Operate the instrument between the temperature range of 0 to $40^{\circ} \mathrm{C}$. Operating the instrument at higher temperatures could cause a fire hazard.
Rapid changes of temperatures from cold to warm can create internal moisture or condensation and could damage the instrument. If there is a possibility of moisture condensation allow the instrument to sit for 30 minutes without the power on.
Operating Humidity Range
Operating humidity range is $<85 \% \mathrm{RH}$. (without condensation)
Do not operate the instrument with wet hands, this could cause a shock and fire hazard.

- Operation in the Presence of Gasses

Operating the instrument in and near the presence or storage locations of flammable, explosive gasses or fumes could create an explosion and fire hazard. Do not operate the instrument anywhere near such environments.

- Avoid Insertions

Do not insert metals or flammable objects or drop liquid on or into the instrument. To do so could cause fire, shock, malfunction and create a dangerous accident hazard.

GENERAL SAFETY SUMMARY

WARNING

- If You Notice Something Wrong during Operation

While operating the instrument if smoke, fire, or a bad smell occurs, turn off the instrument at once for it could cause a fire hazard. To turn off the power when such a case may occur, pull out the plug of an AC/DC adaptor. Contact your local LEADER agent after confirming there is no fire.

- Warning Concerning the LCD Panel

The LCD panel can cause injury if it is broken. Do not apply strong shock to the LCD panel, cut it with sharp metal, or damage it in any similar manner.

- Cautions about the Input and Output Connectors

Input Terminals are rated with a maximum input. Do not supply an input over the specified rating in the standard section of the instruction manual. Also, do not supply external power to Output terminal, this could cause the instrument to malfunction.

- Caution When Not Using the Instrument for a Long Time

Make sure to disconnect the power cord of the AC adaptor from the socket when you do not use the instrument for a long time.

- Cautions Concerning the Ethernet Port

When you are connecting the instrument to the communication provider's equipment, connect to the Ethernet port through a hub that is authorized for use in the country that you are using the instrument in.

GENERAL SAFETY SUMMARY

- Routine Maintenance

Remove the power cord plug from the socket when cleaning the instrument.
Avoid the use of thinner or benzene solvents for cleaning cases, panels and knobs since this might remove the paint or damage plastic surfaces.
Wipe cases, panels, and knobs lightly with a soft cloth damped with neutral detergent.
Do not allow water, detergent, or other foreign objects to enter the instrument while cleaning. If a liquid or metal object enters the instrument, it can cause electric shock or fire.

- About the European WEEE Directive

This instrument and its accessories are subject to the European WEEE Directive. Follow the applicable regulations of your country or region when discarding this instrument or its accessories. (WEEE stands for Waste Electrical and Electronic Equipment.)
Follow the EU Battery Directive when discarding the batteries that you removed from this instrument.

Please conform to the above warnings and cautions for safe operation. There are cautions in each area of in this instruction manual, so please conform to each caution. If you have any questions about this manual, please feel free to contact your local LEADER agent.

1. Introduction

Thank you for purchasing this LEADER instrument. To use this instrument safely, read this instruction manual thoroughly, and make sure that you know how to use the instrument properly.

If some point about the operation of this instrument is still unclear after you have read this instruction manual, refer to the contact information on the back cover of the manual to contact LEADER, or contact your local LEADER agent.
After you have finished reading this manual, keep it in a convenient place so that you can refer to it when necessary.

1.1 Scope of Warranty

This LEADER instrument has been manufactured under the strictest quality control guidelines.

LEADER shall not be obligated to furnish the following free services during the warranty period.

1 Repair of malfunction or damages resulting from fire, natural calamity, or improper voltage applied by the user.
2 Repair of an instrument that has been improperly repaired, adjusted, or modified by personnel other than a factory-trained LEADER representative.
3 Repair of malfunctions or damages resulting from improper use.
4 Repair of malfunctions caused by devices other than this instrument.
5 Repair of malfunctions or damages without the presentation of a proof of purchase or receipt bill for the instrument.

1.2 Handling Precautions

1.2.1 Power Supply Voltage

WARNING

The operating supply voltage range of this instrument's DC power supply is 10 to 18 V . Do not apply a voltage that exceeds this range. Doing so may damage the instrument or lead to fire.

1.2.2 Maximum Allowable Input Voltage

Table 1-1 indicates the maximum signal voltage that can be applied to the input connectors. Do not apply excessive voltage to the connectors. Doing so may damage the instrument or lead to injury.

Table 1-1 Maximum allowable input voltage

Input Connector	Maximum Allowable Input Voltage
INPUT SDI A, INPUT SDI B	$\pm 2 \mathrm{~V}(\mathrm{DC}+$ peak AC)
INPUT VIEW FINDER	$\pm 2 \mathrm{~V}(\mathrm{DC}+$ peak AC)
EXT REF	$\pm 5 \mathrm{~V}(\mathrm{DC}+$ peak AC)
REMOTE	0 to +5 V

1.2.3 Shorting and Applying External Input to the Output Connectors

Do not short the output connectors. Doing so may damage the instrument.
Do not apply an external signal to the output connectors. Doing so may damage the instrument and devices that are connected to it.

1.2.4 Mechanical Shock

This instrument contains sensitive components, such as a crystal oscillator, so it may be damaged if it is dropped or otherwise exposed to a strong shock.
1.2.5 Electrostatic Damage

Electronic components can be damaged by static discharge. Static electricity can build up in the core wire of a coaxial cable. Before connecting a coaxial cable to the instrument, short the core wire of the cable with an external conductor.
1.2.6 Warming Up

To achieve more accurate measurements, turn on the instrument approximately 30 minutes before you intend to use it to allow its internal temperature to stabilize.

1.2.7 USB Memory Devices

Some USB memory devices are not properly recognized by the LV 5330. If the USB icon does not appear in the upper left of the screen when a USB memory device is connected to the LV 5330, restart the LV 5330, and then connect a different USB memory device.

1.2.8 Trademark Acknowledgments

Windows is a registered trademark of Microsoft Corporation in the United States and other countries.
Other company and product names are registered trademarks or trademarks of their respective holders.

2. Specifications

2.1 Product Overview

The LV 5330 is a multi SDI monitor with support for HD-SDI and SD-SDI.
In creating the LV 5330, we prioritized on-site use. This has led to a compact, light, energy-saving design.
With its wide range of features, including picture display, video signal waveform display, vector display, audio level display, error detection, and data analyses, the LV 5330 can be used for both high-precision measurement and monitoring.
The LV 5330 also comes standard-equipped with CINELITE II, a powerful tool for analyzing video signal luminance data, and an analog input connector that enables the LV 5330 to be used as a camera viewfinder.

2.2 Features

- SDI I/O

The LV 5330 has two SDI input connectors that can be used for both HD-SDI and SD-SDI input. It also has an SDI output connector that you can use to send a reclocked SDI signal.

- View Finder Input Connector

The LV 5330 can receive and display analog composite signals (NTSC and PAL). It comes with a peaking feature that assists in focus adjustment.

- TFT LCD

The LV 5330 has an XGA ($1,024 \times 768$) 6.5-inch color TFT LCD.
The LCD can display video signal waveforms, vectors, pictures, audio levels, and status information.
You can also view combinations of these items using the LV 5330 multi-screen display feature.

- Picture Display

The LV 5330 uses fully digital waveform display processing to achieve high precision and versatility. The display has a number of adjustment features such as color temperature selection, brightness adjustment, contrast adjustment, aperture adjustment, and chroma gain adjustment. It also has monochrome and safety marker display features.

- CINELITE II

The LV 5330 comes standard-equipped with CINELITE II (CINELITE and CINEZONE), which is a video signal luminance information analysis tool.
With CINELITE, you can use the cursor to select any 3 points and display their f-Stop numbers, percentage values, and level values. You can choose to analyze a single pixel or a small area by setting the size of the measured area to 1 pixel or to the average value for 9 or 81 pixels. Furthermore, the CINELITE Advanced feature makes it possible to synchronize measurements with the video signal waveform display and vector display. With CINEZONE, you can display the luminance levels in the picture using different colors. This allows you to quickly determine the overall luminance distribution in the picture, and it makes it easy to spot overexposure, underexposure, and different luminance levels in dark areas.

- Video Signal Waveform Display

The LV 5330 uses fully digital waveform display processing to achieve high precision and quality. From video signal waveform display gain expansion, sweep expansion, and cursor measurement to pseudo-composite and RGB displays, the LV 5330 has all of the features that people look for in a waveform monitor. The LV 5330 is equipped with an external sync signal input and it can display video signal waveforms based on a tri-level sync signal or an NTSC or PAL black burst signal.

- Vector Display

The LV 5330 can display component chrominance signal vectors.
The amplitude can be manually zoomed, or set to a fixed magnification value such as five.
The IQ axes, which are useful for vector observation, can be turned on and off.

- 5 Bar Display

The LV 5330 can display the peak levels of the $\mathrm{Y}, \mathrm{R}, \mathrm{G}, \mathrm{B}$ and pseudo-composite signals. This feature is useful for monitoring gamut errors.

- Audio Level Display

The LV 5330 can extract the audio signal embedded in an SDI signal and display levels and values for up to eight channels. (The maximum SD-SDI audio quantization level is 20 bits.)

- Stereo Headphone Output

The LV 5330 can extract the audio signal embedded in an SDI signal. You can select two channels from the extracted audio and transmit them in stereo through the headphone output connector.

- Status Display

The status display has a number of advanced features, including SDI signal error detection and analysis features.

Error Detection

The error detection feature can help you to catch transmission errors such as CRC errors (HD-SDI), EDH errors (SD-SDI), BCH errors, and checksum errors.

Event Log

The ability to log events such as detected errors and input signal switching makes long-term error monitoring easy. The event log can be saved to USB memory or sent to a PC through an Ethernet connection as text data.

Data Dump

The ability to display digital data after parallel conversion in hexadecimal or binary format is useful when there is a problem and is also useful for various kinds of data analysis.
Data dumps can be saved to USB memory or sent to a PC over an Ethernet as text data.

Packet Analysis

The LV 5330 can analyze and display the various packets embedded in an SDI signal.

- Time Code Display

The LV 5330 can decode SMPTE ST 12-2 time codes (LTC or VITC) and SMPTE ST 266 time codes (D-VITC) and display them. These codes can be used as timestamps in the event log.

- Screen Capture

The display can be captured. Captured displays can be viewed or superimposed over an input signal.
Captured displays can be saved in internal memory (RAM) or USB memory or sent to a PC through an Ethernet connection as bitmap data.

- Presets

The LV 5330 can remember up to 30 frequently used setting configurations. The configurations can be recalled easily from the front panel or using commands sent through the Ethernet or remote connector.

- Remote Connector

You can recall presets by sending commands through the remote connector. Also, a tally light can be displayed on the screen.

- Ethernet Connector

From a PC connected to the LV 5330 through the Ethernet connector, you can recall presets, execute panel operations, transfer files, and monitor errors

- Last Memory

The LV 5330 backs up the current settings so that you can use the same settings that you were using before immediately after powering it up.

- 75-mm VESA Mounting

The LV 5330 has 75-mm VESA mounting holes on its rear panel that allow it to be mounted on an arm or stand.

- Tripod Attachment

The tripod adapter on the bottom of the LV 5330 can also be removed and placed on the top.

- Power Supply

The LV 5330 has an XLR DC input connector and runs on a 12-VDC power supply. As a factory option, a battery adapter can be attached to the rear of the LV 5330. With this option, the LV 5330 can use the kinds of batteries that are used in video cameras and other equipment.
(The 75-mm VESA mounting holes cannot be used if the LV 5330 has a battery adapter attached to it.)

2.3 Specifications

2.3.1 Video Signal Formats and Corresponding Standards

Table 2-1 Video signal formats and corresponding standards
Single Link

Color System	Quantization		Format	Compliant Standard
		Scanning	Frame (Field) Rates	
$Y C_{B} C_{R} 4: 2: 2$	10 bits	1080i	60/59.94/50	SMPTE ST 274 SMPTE ST 292
		1080p	30/29.97/25/24/23.98	
		1080PsF	30/29.97/25/24/23.98	
		720p	60/59.94/50	SMPTE ST 296
			30/29.97/25/24/23.98	SMPTE ST 292
		525i	59.94	SMPTE ST 259
		625i	50	

Dual Link (*1)

Color System	Quantization	Format		Compliant Standard
		Scanning	Frame (Field) Rates	
RGB 4:4:4	10 bits	1080 i	$60 / 59.94 / 50$	SMPTE ST 372
		1080 p	$30 / 29.97 / 25 / 24 / 23.98$	(1920×1080)
		1080PsF	$30 / 29.97 / 25 / 24 / 23.98$	

Format Setting

Supported Sampling Frequencies
HD
SD
External Sync

Can be set automatically based on the corresponding format or set manually
74.25 MHz or $74.25 / 1.001 \mathrm{MHz}$
13.5 MHz

Automatically set from the corresponding format
*1 Only link A can be displayed. Link B cannot be displayed.

2.3.2 Audio Playback

Compliant Standard

HD
SD
Sampling Frequency
Quantization
HD
SD
Clock Generation
Synchronization

Phases

Channel Separation

SMPTE ST 299
SMPTE ST 272
48 kHz (must be synchronized to the video signal)

24 bits
20 bits
Video clock
All audio channels must be synchronized to the video clock.
All phases must be in-sync.
Two groups of eight channels are selectable.

2.3.3 Input/Output Connectors

SDI Input	
Input Connector	2 BNC connectors (A/B switching)
Input Impedance	75Ω
Input Return Loss	$\geq 15 \mathrm{~dB}$ for 5 MHz to the serial clock frequency
Maximum Input Voltage	$\pm 2 \mathrm{~V}$ (DC + peak AC)
SDI Output	
Output Connector	1 BNC connector
	Reclocks and transmits the selected SDI input signal
Output Impedance	75Ω
Output Voltage	$800 \mathrm{mVp}-\mathrm{p} \pm 10 \%$
View Finder Input	
Function	Used to display the picture of a composite video signal
Input Connector	1 BNC connector
Input Impedance	75Ω
Input Signal	NTSC or PAL VBS
Input Voltage	$1 \mathrm{Vp}-\mathrm{p}$
Maximum Input Voltage	$\pm 2 \mathrm{~V}$ ($\mathrm{DC}+$ peak AC)
External Reference Input*	
Input Signal	Tri-level sync or NTSC/PAL black burst signal
Input Connector	1 pair of BNC connectors
Input Impedance	$15 \mathrm{k} \Omega$ passive loop-through
Input Return Loss	$\geq 30 \mathrm{~dB}$ for 50 kHz to 30 MHz
Maximum Input Voltage	$\pm 5 \mathrm{~V}$ ($\mathrm{DC}+$ peak AC)
Headphone Output	
Output Signal	The LV 5330 extracts and transmits the audio signal embedded in an SDI signal. (Must be synchronized to the video signal.)
Output Connector	1 stereo miniature jack
Volume Adjustment	Configured in the menu
Impedance	32Ω (16 to 600Ω)

* If the video signal waveform or phase difference is displayed using an external sync signal as reference, the waveform phase one clock before or after an SDI signal is inserted or the power is turned on is indefinite.
2.3.4 Control Connectors

USB Port
Function

Compliant Standard
Media
Remote Connector
Function

Control Signal
Control Connector
Locking Screws
Ethernet
Function

Compliant Standard
Input/Output Connectors
Type

2.3.5 LCD

LCD Type
Format
Backlight Brightness
Auto Shutoff
2.3.6 Display Modes

Single Screen

2 Screen

4 Screen Display

Format Display

Used to save screen captures, event logs, preset data, and data dumps
USB 2.0
Only USB memory devices are supported.

Used to recall presets, display a tally light, and switch input channels (A/B)
TTL level (active-low logic)
15-pin D-sub (female)
Inch screws (No.4-40UNC)

Used to control the LV 5330 from a PC and monitor errors and other events
IEEE802.3
1 RJ-45 connector
10Base-T/100Base-TX (automatic switching)

6.5-inch color TFT

XGA. The effective resolution is $1,024 \times 768$.
Can be set to HIGH or LOW
LCD can be automatically turned off after a set period of time.

Picture display, CINELITE display, CINEZONE display, video signal waveform display, vector display, status display, or view finder display Picture display and video signal waveform display
Video signal waveform display and vector display
Video signal waveform display and picture display

Video signal waveform display and audio level display
Audio level values and meters
Vector display, video signal waveform display, status display, and picture display (the status display can be switched to the audio level display)
Displays the video signal format at the top of the screen.
Color System Display
Date Display
Time or Time Code Display

Time Code
Compliant Standard LTC and VITC D-VITC

2.3.7 Screen Capture

Function
Display

Media

Data Output

Data Input
2.3.8 Presets

Number of Presets
Recall Method

Copying

2.3.9 Video Signal Waveform Display
 Waveform Operations
 Display Modes
 Overlay
 Parade
 Timing

Blanking Period
RGB Conversion

Displays the video signal color system at the top of the screen.
Displays the date according to the internal clock at the top of the screen
Displays the time according to the internal clock or a time code at the top of the screen
LTC, VITC, or D-VITC

SMPTE ST 12-2
SMPTE ST 266

Captures the screen

Displays the captured image or superimposes the captured image over the input signal Internal memory (RAM) and USB memory Only one screen capture can be stored in the internal memory.
Screen captures can be saved as bitmap files or in a file format that the LV 5330 can load.
They can be saved to USB memory or transmitted through an Ethernet and saved on a PC.
Data saved to USB memory can be loaded and displayed on the LV 5330.

30

Front panel or remote connector or Ethernet command

Preset configurations can be copied as a group to or from USB memory.

Overlays component signals.
Displays component signals side by side.
Computes and displays $\mathrm{Y}-\mathrm{C}_{\mathrm{B}}$ and $\mathrm{Y}-\mathrm{C}_{\mathrm{R}}$. Uses a bowtie signal (permission to use patented technology granted by Tektronix, Inc.).
Show or hide
Converts a $\mathrm{YC}_{\mathrm{B}} \mathrm{C}_{\mathrm{R}}$ signal into an RGB signal and displays the result.

Pseudo-Composite Display	Artificially converts component signals into composite signals and displays the result. In RGB conversion display, the order can be set to GBR order or RGB order.
Channel Assignment	Displays the selected line.
	H and V

Line Select	Displays the selected line
Pseudo-Composite Display	Artificially converts component signals into
composite signals and displays the result.	

* In the multi-screen display, the blanking period depends on the video signal waveform display blanking display settings.
2.3.11 5 Bar Display

Function	Displays five peak levels: those of the $\mathrm{Y}, \mathrm{R}, \mathrm{G}, \mathrm{B}$ and composite signals. Percentage or mV
Scale	Based on gamut error level and composite gamut error level settings.
Error Level	1 MHz LPF or 2.8MHz LPF (only HD signals) (removes transient errors and can be turned
Filter	ON and OFF)
	Displays the selected line

2.3.12 Phase Difference Display

Display

Display Range
Vertical
Horizontal
Displays the phase difference between an SDI
signal and the external sync signal both numerically and graphically.

Approx. $\pm 1 / 2$ frame
± 1 line
2.3.13 Picture Display

Color Temperature
Image Quality Adjustment

Display Sizes
Color Selection
Frame Rate

Marker Displays
Center Marker
Aspect Markers

HD
SD
Safe Action Markers
Safe Title Markers
Line Select
Gamut Error Display

3200 K, 6500 K, 9300 K or THROUGH
Brightness, contrast, chroma level, and aperture
FIT, $\times 1, \times 2$ or FULL
Color or monochrome
The frame rate is converted and displayed using the internal sync signal.

4:3, 14:9, 13:9, 2.35:1, 1.85:1, and 1.66:1
16:9, 14:9, 13:9, 2.35:1, 1.85:1, and 1.66:1
95%, 93 \%, and 90 \%
88 \% and 80 \%
Marks the selected line
Displays gamut error locations over the picture

2.3.14 CINELITE Display

CINELITE Display
Function
f-Stop Display
f-Stop Gamma Correctio

Reference Gamma
User-Defined Correction Tables
External Correction Tables
Regamma
Percentage Display

Level Display

Measured points
Measurement sizes
CINELITE Advanced Display
Features

Synchronized Marker Display

Vector Marker Display

Number of Markers
Synchronized Marker
Vector Marker
Vector Numeric Display
Cb
Cr
deg
d
f-Stop display, percentage display, and level display
Displays the f value relative to the reference point
The reference point is set to the value of an object with a reflection level of 18 \%.
0.45 (ITU-R BT709)

3
5 (read from USB memory)
ON or OFF
Displays luminance or RGB components as percentages.
Displays RGB components with 256 levels (8 bits).
3
1 pixel, 3×3 pixels, or 9×9 pixels

Synchronized marker display, vector marker display
Synchronizes the markers on the vector display or waveform display to the measurement points of the CINELITE display's f Stop display or \% display
Displays numerically the specified position on the vector display

Up to 4
1
Displays numerically the active marker position
Displays the C_{B} position as a percentage
Displays the C_{R} position as a percentage
Displays the hue in degrees
Displays the distance from the center as a percentage
2.3.15 CINEZONE Display

CINEZONE Display
Function

Display Colors
Upper Limit Setting

Lower Limit Setting
Level Search Display
Function

Luminance Level Setting
Luminance Level Range Setting

Displays the luminance levels in the picture using different colors
Linear (1024 colors) or step (12 colors)
-6.3 to 109.4 \% (values above the upper limit are displayed using white)
-7.3 to 108.4 \% (values below the lower limit are displayed using black)

Colors are added to the display in accordance with luminance level ranges
-7.3 to 109.4 \%
0.5 to 100.0% (values greater than or equal to the specified range are displayed in white; values less than or equal to the range are displayed in black)

8

60 dB peak level, 90 dB peak level, or average 0.5 to 5.0 seconds/HOLD (when displaying the peak level)

You can select any two groups from groups 1, 2, 3 , and 4.
Detects the presence of each audio channel
48 kHz (must be synchronized to the video signal)

SDI Signal Error Detection	
Signal Detection	Detects the presence of an SDI signal
TRS Error	Detects TRS location and protection bit errors
Line Number Error	Detects HD-SDI signal line number errors
CRC Error	Detects HD-SDI signal transmission errors
EDH Error	Detects SD-SDI signal transmission errors
Gamut Error	Detects gamut errors
Detection Range Upper Limit	90.8 to 109.4 \%
Detection Range Lower Limit	-7.2 to 6.1 \%
Filter	1 MHz LPF or 2.8 MHz LPF (only HD signals) (removes transient errors and can be turned ON and OFF)
Composite Gamut Error	Detects level errors that occur when component signals are converted to composite signals
Detection Range Upper Limit	90.0 to 135.0 \%
Detection Range Lower Limit	-40.0 to -20.0 \%
Filter	1 MHz LPF or 2.8 MHz LPF (only HD signals) (removes transient errors and can be turned ON and OFF)
Parity Error	Detects ancillary data header parity errors
Checksum Error	Detects ancillary data transmission errors
BCH Error	Detects errors in the transmission of the audio signal embedded in an HD-SDI signal
Audio CRC Error	Detects CRC errors in channel status bits
Audio Information Detection	Detects the presence of each audio channel
Error Count	Up to 100,000 errors (Only the specified errors are counted.)
Count Period	Only one error is counted for each second or frame.
Elapsed Time	Time elapsed since the error count was cleared
Event Log Display	
Recording Capacity	Up to 1,000 events
Description	Records all events from start to finish
Recorded Events	Errors, changes in input type, time stamps, etc.
Data Output	Event logs can be saved to USB memory or sent to a PC through an Ethernet connection as text data.
Data Dump Display	
Display Modes	Display data separated by serial data sequence or by channel
Line Select	Displays the selected line
Sample Select	Displays from the selected sample
Jump Feature	Jumps to an EAV or SAV
Data Output	Event logs can be saved to USB memory or sent to a PC through an Ethernet connection as

text data.

Audio Status Display

Channel Status

EDH Display

Compliant Standard
Display Details
Format ID Display
Compliant Standards
Display Details
Closed Caption Display
Compliant Standard
Display Details

Display Formats

Analyzes and displays SDI signal audio control packets
Analyzes and displays or displays the dump of the channel status of the embedded audio signal

SMPTE RP165
Analyzes and displays received EDH packets

SMPTE ST 352 and ARIB STD-B39
Analyzes and displays the format ID

ARIB STD-B37
Analyzes and displays the closed caption signal.
Text, hexadecimal, and binary

Inter-Stationary Control Data Display (NET-Q)	
Compliant Standard	ARIB STD-B39
Display Details	Analyzes and displays inter-stationary control
	data
Display Formats	Text, hexadecimal, and binary

2.3.18 View Finder Display
Display Contents
Display Size
Image Quality Adjustment

Picture display
Full screen
Brightness, contrast, chroma level, and aperture

2.3.19 Front Panel

Key LEDs

Power Switch

Last Memory
All the keys are lit at all times, or you can light all the keys by pressing the shortcut key.
Turns the power on and off. If power is removed when the switch is on, the instrument will turn on when power is restored
Backs up the panel settings.
2.3.20 Rear Panel

Stand Attachment
Battery Adapter*

75-mm VESA Mounting
As an option, an adapter can be attached that enables the LV 5330 to use batteries produced by IDX or Anton/Bauer.

[^0]
2.3.21
 General Specifications

Environmental Conditions

Operating Temperature Range
Operating Humidity Range
Optimal Temperature Range Optimal Humidity Range
Power Supply
Voltage
Power Consumption
Dimensions

Weight
Accessories
0 to $40^{\circ} \mathrm{C}$
$85 \% \mathrm{RH}$ or less (no condensation)
10 to $30^{\circ} \mathrm{C}$
$85 \% \mathrm{RH}$ or less (no condensation)
10 to 18 VDC
18 W max.
$215 \times 128 \times 63 \mathrm{~mm}(\mathrm{~W} \times \mathrm{H} \times \mathrm{D}$; excluding
protruding parts)
1.4 kg
Instruction manual............................ 1
$15-$ pin D-sub connector................ 1
$15-$ pin D-sub connector cover 1
VESA spacer.................................... 1
Ferrite core....................................... 1Ferrite core1

3. Component Names and Functions

3.1 Front Panel

Figure 3-1 Front panel
Table 3-1 Front panel items and functions

No.	Name	Function
1	Power switch	A quick push switches the power from off to on. Holding the switch switches the power from on to off. Reference: Section 4.2, "Preparing the Power Supply"
2	Power LED	Lights when the power is on and turns off when the power is off.
3	SDI A/B key	Switches the input channel. Reference: Section 4.3, "Applying SDI Input Signals"
4	REFE INT/EXT key	Switches between the internal sync signal and an external sync signal. Reference: Section 4.6, "Applying an External Sync Signal"
5	CAPTURE key	Takes a screen capture of the display. Reference: Chapter 7, "Screen Capture Feature"
6	SYSTEM key	Press this key to make system settings. Reference: Chapter 5, "System Settings"
7	MEMORY key	Press this key to save or delete presets. Reference: Chapter 6, "Presets"
8	RECALL key	Press this key to recall a preset setting configuration. Reference: Section 6.2, "Loading Presets"
9	SHORTCUT key	Can be configured to be used for one of the following operations:

No.	Name	Function
		turning on the key LEDs, taking a screen capture, recalling a preset setting configuration, adjusting the volume, or adjusting the contrast. Reference: Section 5.6, "Assigning a Function to the SHORT CUT Key"
10	$\mathrm{F} \cdot 1$ to $\mathrm{F} \cdot 7$ keys	Used to select menu items and pop-up commands.
11	PICTURE key	Displays the picture. Reference: Chapter 8, "Picture Display"
12	CINELITE key	Switches to the CINELITE display. Reference: Chapter 9, "CINELITE Display"
13	CINEZONE key	Switches to the CINEZONE display. Reference: Chapter 10, "CINEZONE Display"
14	WFM key	Switches to the video signal waveform display. Reference: Chapter 11, "Video Signal Waveform Display"
15	VECTOR key	Switches to the vector display. Reference: Chapter 12, "Vector Display"
16	MULTI key	Shows multiple displays at the same time. Switches to the audio display. Reference: Chapter 13 "Audio Display," chapter 16, "Multi-Screen Display Feature"
17	STATUS key	Switches to the status display. Reference: Chapter 14, "Status Display"
18	VIEW FINDER key	Displays the picture of the composite video signal. Reference: Chapter 15, "View Finder Display"
19	V POS/BRIGHT knob	Changes the vertical position in the video signal waveform display and changes the brightness in the picture display. Pushing the knob returns the value that you are adjusting to its default setting. Reference: Section 11.2.1, "Setting the Vertical Position," section 8.2.1, "Adjusting the Brightness"
20	H POS/CONT knob	Changes the horizontal position in the video signal waveform display and changes the contrast in the picture display. Pushing the knob returns the value that you are adjusting to its default setting. Reference: Section 8.2.2, "Adjusting the Contrast," section 11.2.2 "Setting the Horizontal Position"
21	F•D knob	Mostly used to set values. Generally, pressing this knob will return the value you are adjusting to its default setting. Reference: Section 4.10, "Basic Menu Operations"
22	Control stick	Moves the picture in the picture display and moves the cursor in the CINELITE display. Reference: Section 4.10, "Basic Menu Operations"
23	Headphone jack	Use to connect headphones. Reference: Section 13.6, "Headphone Settings"
24	USB port	Use to connect USB memory. USB memory is used to load and save various kinds of data. Reference: Section 1.2.7, "USB Memory Devices"
25	LCD	All of the different measurement and data displays appear here.

3.2 Rear Panel

Figure 3-2 Rear panel
Table 3-2 Rear panel items and functions

No.	Name	Function
26	EXT REF	External reference input connectors. They are loop-through. Reference: Section 4.6, "Applying an External Sync Signal"
27	INPUT VIEW FINDER	Composite video signal input connector. Reference: Section 4.5, "Applying a Composite Video Signal"
28	INPUT SDI A INPUT SDI B	SDI signal input connectors. Reference: Section 4.3, "Applying SDI Input Signals"
29	OUTPUT SDI	Reclocked SDI signal output connector. Reference: Section 4.4, "Transmitting an SDI Output Signal"
30	Serial Number Label	The serial number is printed here.
31	REMOTE	Remote control connector. Can be used to execute actions such as recalling presets. Reference: Section 17.1, "Remote Control Feature"
32	DC INPUT	Input connector for the DC power supply. Reference: Section 4.2.1, "Attaching the DC Power Cord"
33	ETHERNET	Ethernet connector. Supports TELNET, FTP, and SNMP. Can be used to execute panel operations. Reference: Section 17.2, "TELNET," section 17.3, "FTP," section 17.4, "SNMP"
34	FAN	Cooling fan.

No.	Name	Function
35	VESA Mounting Holes	VESA compliant $(75 \times 75 \mathrm{~mm})$ mounting holes. Reference: Section 4.8, "Using a VESA Stand"

3.3 Top and Bottom Panels

Figure 3-3 Top and bottom panels
Table 3-3 Top and bottom panel items and functions

No.	Name	Function
36	Tripod adapter	Used to attach a tripod to the LV 5330. The tripod adapter can also be attached to the top panel. Reference: Section 4.7, "Using a Tripod"

4. Before You Begin Measuring

4.1 Attaching the Ferrite Cores

Before connecting headphones to the LV 5330, follow the procedure below to attach a ferrite core that comes with the LV 5330 to the headphone cable. The ferrite core reduce the noise that is produced when you connect cable to the LV 5330.

1. Release the two tabs, and open the ferrite core cover.

Figure 4-1 Ferrite core attachment step 1
2. Attach the ferrite core approximately 5 mm away from the headphone jack.

Figure 4-2 Ferrite core attachment step 2
3. Wrap the cable around the core once.

Figure 4-3 Ferrite core attachment step 3
4. Close the ferrite core cover.

Be careful not to pinch the power cord when you close the cover.

Figure 4-4 Ferrite core attachment step 4

4.2 Preparing the Power Supply

4.2.1 Attaching the DC Power Cord

The DC power supply input connector and its pin assignments are shown below. Apply +12 V to pin 4 shown in the figure below.
When the LV 5330 is connected to the DC power supply, the internal microcomputer is in standby mode and some power is consumed even if the power switch is turned off. If you do not intend to use the LV 5330 for an extended period of time, disconnect the DC power supply.

Figure 4-5 DC power supply input connector
Table 4-1 DC power supply input connector pin alignment

Pin No.	Pin Name
1	GND
2	NC* *
3	NC* *
4	+12 V

* Do not connect anything to this pin.

The operating supply voltage range of this instrument's DC power supply is 10 to 18 V . Do not apply a voltage that exceeds this range. Doing so may damage the instrument or lead to fire.

4.2.2 Turning On the Power

To turn on the power, press the power switch on the front panel. The LED next to the power switch lights when the power is on.
When you turn on the power, the LV 5330 starts up with the same panel settings that were set when it was last turned off. However, the error counter and event log in the status display are cleared.
4.2.3 Turning Off the Power

To turn off the power, hold the power switch on the front panel for one second or more. The LED next to the power switch turns off when you turn off the power.

4.3 Applying SDI Input Signals

The figure below shows the SDI signal input connectors.

Figure 4-6 SDI input connectors

- The SDI input connectors (INPUT SDI A and INPUT SDI B) are for component SDI (serial digital interface) signals only. Do not apply analog video signals, composite SDI signals, or any other kind of signal besides component SDI.
- The SDI input connectors (INPUT SDI A and INPUT SDI B) are terminated internally at 75 Ω. You do not need to attach a terminator. Connect each of the SDI input connectors to a cable with a characteristic impedance of 75Ω.
- Make sure that the SDI input signal strength is $800 \mathrm{mVp}-\mathrm{p} \pm 10 \%$ at the input signal source BNC output connector. An SDI signal that is outside of this range may not be received properly.
- You can press SDI on the front panel to switch from measuring the signal being applied to one connector to measuring the signal being applied to the other connector.
- The LV 5330 supports the formats listed in the table below. The input format is detected automatically by default. To set the input format manually, see section 5.1, "Setting the Input Format."

Table 4-2 Supported formats

Color System	Scanning	Frame or Field Rates
$\mathrm{YC}_{\mathrm{B}} \mathrm{C}_{\mathrm{R}} 4: 2: 2$	1080 i	$60,59.94,50$
	1080 PsF	$30,29.97,25,24,23.98$
	1080 p	$30,29.97,25,24,23.98$
	720 p	$60,59.94,50,30,29.97,25,24,23.98$
	525 i	59.94
	625 i	50
RGB 4:4:4	1080 i	$60,59.94,50$
	1080 PsF	$30,29.97,25,24,23.98$
	1080 p	$30,29.97,25,24,23.98$

The maximum allowable voltage of the SDI input connectors is $\pm 2 \mathrm{~V}$. Do not apply excessive voltage to the connectors. Doing so may damage the instrument or lead to injury.

4.4 Transmitting an SDI Output Signal

The signal that the SDI output connector delivers is a reclocked version of the SDI signal that has been selected using the SDI on the front panel. Use the output connector to transmit the signal to a picture monitor that supports SDI signals.
The output impedance of the connector is 75Ω. Terminate the other end at 75Ω.
OUTPUT
75月 SDI

Figure 4-7 SDI output connector

4.5 Applying a Composite Video Signal

The figure below shows the composite video signal input connector. You can only check the picture of a signal that is applied to the connector. You can check the picture by viewing the signal in a view finder display.
The composite video input connector is terminated internally at 75Ω, so there is no need to connect a terminator to it when it is not in use. Connect the composite input connector to a cable with a characteristic impedance of 75Ω.

Figure 4-8 Composite video input connector

The maximum allowable voltage of the external reference input connectors is $\pm 2 \mathrm{~V}$. Do not apply excessive voltage to the connectors. Doing so may damage the instrument or lead to injury.

4.6 Applying an External Sync Signal

You can use an external sync signal for in the video signal waveform and vector displays. Apply a tri-level sync signal or an NTSC/PAL black burst signal to the external reference input connectors. The LV 5330 determines the sync signal format automatically.

Figure 4-9 External reference input connectors

- As shown in the figure below, the external reference input connectors are loop-through. Apply the input signal to one of the two connectors, and terminate the other connector at 75Ω, or connect it to another 75Ω device. If you connect to another device, be sure to terminate the device's connector at 75Ω. Connect each of the external reference input connectors to a cable with a characteristic impedance of 75Ω.

Figure 4-10 Loop-through

- To use an external sync signal, press REFE on the front panel to select EXT.

Regardless of this setting, the picture, audio, and status displays all use the internal sync signal.

- If the video signal waveform or phase difference is displayed using an external sync signal as a reference, the waveform phase one clock before or after an SDI signal is inserted or the power is turned on is indefinite.
- If you are going to apply a tri-level sync signal, be sure to use one that has the same frame and line rates as the HD signal.
- The formats in which waveforms can be displayed while using a black burst signal as the sync signal are listed below. If the external sync signal is an NTSC black burst signal with an embedded 10-field ID and the SDI signal is $1080 \mathrm{PsF} / 23.98$ or $1080 \mathrm{p} / 23.98$, the LV 5330 automatically recognizes the 10-field ID.

[^1]The maximum allowable voltage of the external reference input connectors is $\pm 5 \mathrm{~V}$. Do not apply excessive voltage to the connectors. Doing so may damage the instrument or lead to injury.

4.7 Using a Tripod

You can attach the LV 5330 to a tripod by using the tripod adapter on the bottom panel.
The tripod adapter can also be attached to the top panel. To attach the tripod adapter, you will need a 2-mm hexagonal wrench.

4.8 Using a VESA Stand

You can attach a VESA stand $(75 \times 75 \mathrm{~mm})$ to the LV 5330.
When you attach a VESA stand to the LV 5330, insert the supplied VESA spacer between the LV 5330 and the stand.

Figure 4-11 Attaching a VESA stand

4.9 General Display Explanation

This section explains the common elements in all measurement displays.

Figure 4-12 General display explanation

1 Input format

The input signal format appears here. You can hide this item.
When you are displaying an SDI signal, you can choose to specify the input format manually or to have the LV 5330 detect it automatically. If there is no input signal or the format of the signal is different from the manually set format, " \qquad " appears here. When you are displaying a composite signal, the input format (NTSC or PAL) is detected automatically.
Reference: Section 5.1, "Setting the Input Format," section 5.3.1, "Displaying the Input Format"

2 Color system

The video signal waveform display color system (YCbCr, (D.)GBR, (D.)RGB, (D.)YGBR, (D.)YRGB, or (D.)COMP) appears here. You can hide this item.

This item does not appear in the view finder display.
Reference: Section 5.3.4, "Displaying the Color System," section 11.8, "Color System Settings"
3 Date
The date set in the system settings appears here. You can choose the date display format from one of the following options: Y/M/D, M/D/Y, D/M/Y, or OFF.
Reference: Section 5.3.2, "Selecting the Date Display Format," section 5.5 , "Setting the Date and Time"

4 Time

The time set in the system settings or the timecode embedded in the SDI input signal appears here. You can hide this item.
You can set the timecode to LTC or VITC.
Reference: Section 5.3.3, "Selecting the Time Display Format," section 5.3.5, "Selecting the Timecode Display Format," section 5.5 , "Setting the Date and Time"

5 Error message

Error messages appear here. The error messages that appear and the conditions that cause them are listed below.

If "It...stops." or "FAN ALARM" appears even though there are no problems with the operating environment, contact your local LEADER agent.

NO_SIGNAL This message appears when there is no signal.
ERROR This message appears when an error occurs that has been set to be detected in the status display or when there is an error in the input format.
It...stops. This message appears when the internal temperature of the LV 5330 has reached or exceeded $80^{\circ} \mathrm{C}$.
FAN ALARM This message appears when the fan is broken.
6 Input channel
The input channel (A or B) appears here. You can change the input channel by pressing SDI on the front panel. This item does not appear in the view finder display.

7 Sync signal

"INT" appears here when an internal sync signal is being used, and "EXT" appears when an external sync signal is being used. You can change the sync signal by pressing REFE on the front panel. This item does not appear in the view finder display.

8 USB
Appears when USB memory is connected.
Reference: Section 1.2.7, "USB Memory Devices"
9 Tally light
This item appears in green when pin 13 of the remote connector is connected to a ground. This item does not appear in the video signal waveform, vector, multi, or status display.
Reference: Section 17.1.4, "Displaying a Tally Light"
10 Menu
The menu here is used to configure various settings. In some displays, the menu disappears after approximately five seconds have passed since the last operation. When the menu has disappeared, pressing any key will cause it to reappear.

11 Message
Messages are displayed here. The messages that appear and the conditions that cause them are listed below.

FAN WORKING START SOON. This message appears when the fan is not operating and the internal temperature of the LV 5330 has reached or exceeded $40^{\circ} \mathrm{C}$.
The fan will start spinning one minute after this message appears.

POWER OFF START SOON. This message appears when the internal temperature of the LV 5330 has reached or exceeded $85^{\circ} \mathrm{C}$.

The power will be turn off one minute after this message appears.

4.10 Basic Menu Operations

Most of the settings are configured using the setup menu.
This section explains how to operate the setup menu, using the setup menu in the picture display as an example.

Figure 4-13 Basic menu operations
1 Selecting a setting
To select a setting from a list like the one shown above F•3 SIZE in the figure, press F•3 repeatedly to select the setting you want. The setting changes each time you press F•3. After you stop pressing $\mathbb{F} \cdot 3$, the setting is confirmed and the pop-up menu disappears.

2 Setting a value

To set the value of a setting like F•5 CHROMA\%, which is shown above, press F•5, and then turn $F \cdot D$. Generally, pressing $F \cdot D$ will return the value you are adjusting to its default setting.

3 Using the control stick
Use the control stick to move the picture in the picture display or to move the cursor in the CINELITE display. Both the picture and the cursor move in the direction that you push the stick. To move more quickly, press down on the stick before pushing it in the direction that you want to move.
This feature is not available on the multi display.

5. System Settings

You can configure general LV 5330 settings in the system menu.
To display the system menu, press SYSTEM.

SYSTEM \rightarrow

FORMAT	COLOR 6500	DISPLAY	INTRFACE \&L I CENSE	 TIME	SHORTCUT KEY SET LIGHT	SETUP INIT

Figure 5-1 System menu

5.1 Setting the Input Format

To set the input format, press F•1 FORMAT in the system menu. A menu for setting the input format and the composite display format appears.
$\overline{\text { SYSTEM }} \rightarrow$ F•1 FORMAT \rightarrow
$\left.\begin{array}{|c|c|c|c|c||c|c|}\hline \text { MODE } & \text { i/PsF } & \text { SCANNING } & \text { FRM/FLD } & \text { LINK } & \begin{array}{c}\text { COMPOSIT } \\ \text { FORMAT } \\ \text { AUTO }\end{array} & \text { SELECT } \\ \text { INTERLAC } & 1080 i & \text { FREQ } \\ 59.94 & \text { SINGLE } & \text { menu } \\ \text { AUTO }\end{array}\right]$

Figure 5-2 FORMAT menu

5.1.1 Setting the Input Format Detection Method

To select whether to detect the input format automatically or to set it manually, follow the procedure below.

Procedure
SYSTEM \rightarrow F•1 FORMAT \rightarrow F•1 MODE
Settings
AUTO: The input format is detected automatically (this is the default setting).
MANUAL: The input format must be set manually.

5.1.2 Selecting i or PsF

Even if you set $\mathrm{F} \cdot 1$ MODE to AUTO, the following formats cannot be detected automatically.

- 1080i/60 and 1080PsF/30
- 1080i/59.94 and 1080PsF/29.97
- 1080i/50 and 1080PsF/25

To select whether to display the input format name as interlaced or segmented frame, follow the procedure below.
This setting is available when F•1 MODE is set to AUTO.
Procedure
SYSTEM \rightarrow F•1 FORMAT \rightarrow F•2 $\mathrm{i} /$ PsF SELECT

Settings

INTERLAC: The input format name is displayed as interlaced (this is the default setting).
SEG.FRM: The input format name is displayed as segmented frame.

5.1.3 Setting the Input Format

If you set $F \cdot 1$ MODE to MANUAL, you have to set the input format manually.
To set the input format, follow the procedure below.
These settings are available when $\mathbb{F} \cdot 1$ MODE is set to MANUAL.

Procedure

1. SYSTEM $\rightarrow \mathbb{F} \cdot 1$ FORMAT $\rightarrow \mathbb{F} \cdot 3$ SCANNING (Select the scanning method.)
2. F•4 FRM/FLD FREQ (Set the field or frame frequency.)

Table 5-1 Input formats

F•3 SCANNING	F•4 4 FRM/FLD FREQ
1080 i	$60,59.94$, and 50
1080 PsF	$30,29.97,25,24$, and 23.98
1080 p	$30,29.97,25,24$, and 23.98
$720 p^{* 1}$	$60,59.94,50,30,29.97,25,24$, and 23.98
$525 i^{* 1}$	59.94
$625 i^{* 1}$	50

*1 You can specify this value when the LV 5330 is in dual link mode, but it will have no effect.

5.1.4 Selecting a Link Format

To select a link format, follow the procedure below.
Procedure

$$
\text { SYSTEM } \rightarrow \text { F•1 FORMAT } \rightarrow \text { F• } 5 \text { LINK }
$$

Settings

SINGLE: The LV 5330 is set to single link mode. This is the default setting.
DUAL-A: The LV 5330 is set to dual link mode. However, only link A is supported. You must manually set the input format. Set F•1 MODE to MANUAL.
5.1.5 Setting the Composite Display Format

To set the composite display format, follow the procedure below.
The composite display format affects how video signal waveforms and vectors are converted into pseudo-composite signals.

Procedure
SYSTEM \rightarrow F• 1 FORMAT \rightarrow F• 6 COMPOSIT FORMAT
Settings
AUTO: When the field frequency of a received SDI signal is 50 Hz or the frame frequency is 25 or 50 Hz , the signal is converted into a PAL pseudo-composite signal. Otherwise, the signal is converted into an NTSC pseudo-composite signal (this is the default setting).
NTSC: All received SDI signals are converted into NTSC pseudo-composite signals.
PAL: All received SDI signals are converted into PAL pseudo-composite signals.

5.2 Selecting the Monitor's Color Temperature

To set the monitor's color temperature, follow the procedure below.
Procedure

$$
\text { SYSTEM } \rightarrow \text { F•2 COLOR }
$$

Settings

3200: The monitor's color temperature is set to 3200 K .
6500: The monitor's color temperature is set to 6500 K (this is the default setting).
9300: The monitor's color temperature is set to 9300 K .
THROUGH: The monitor's color temperature is not adjusted.

5.3 Display Settings

To configure the display settings, press F•3 DISPLAY in the system menu. A menu appears for setting the brightness and auto shutoff time of the backlight, for configuring the display of remaining battery power, and for configuring the lighting of key LEDs.

SYSTEM \rightarrow F•3 DISPLAY \rightarrow

Figure 5-3 DISPLAY menu
5.3.1 Displaying the Input Format

To show or hide the input format, follow the procedure below. The input format appears at the top of the screen.

Procedure

$$
\text { SYSTEM } \rightarrow \text { F•3 DISPLAY } \rightarrow \text { F•1 INFORMATION } \rightarrow F \cdot 1 \text { FORMAT }
$$

Settings

ON: \quad The input format is displayed (this is the default setting).
OFF: \quad The input format is not displayed.

5.3.2 Selecting the Date Display Format

To set the date display format, follow the procedure below. The date appears in places such as at the top of the screen, in the event log, and in the USB memory display.

Procedure

$$
\text { SYSTEM } \rightarrow \text { F•3 DISPLAY } \rightarrow \text { F•1 INFORMATION } \rightarrow \text { F•2 DATE }
$$

Settings

Y/M/D: \quad The date is displayed in this order: year, month, day (this is the default setting).
M/D/Y: \quad The date is displayed in this order: month, day, year.
$\mathrm{D} / \mathrm{M} / \mathrm{Y}: \quad$ The date is displayed in this order: day, month, year.
OFF: \quad The date is not displayed at the top of the screen. All other date displays are arranged in this order: year, month, day.

5.3.3 Selecting the Time Display Format

To set the time display format, follow the procedure below. The time appears in places such as at the top of the screen, in the event log, and in the USB memory display.

Procedure
SYSTEM \rightarrow F•3 DISPLAY \rightarrow F•1 INFORMATION \rightarrow F•3 TIME

Settings

REAL: \quad The date set in the system settings is displayed (this is the default setting).
TIMECODE: The timecode embedded in the SDI input signal is displayed at the top of the screen and in the event log.
OFF: The time is not displayed at the top of the screen. All other time displays are based on the time set in the system settings.

5.3.4 Displaying the Color System

To show or hide the color system, follow the procedure below. The color system is indicated at the top of the screen as YCbCr, (D.)GBR, (D.)YGBR, (D.)RGB, (D.)YRGB, or (D.)COMP.

Procedure

SYSTEM \rightarrow F•3 DISPLAY \rightarrow F•1 INFORMATION \rightarrow F•4 COLOR

Settings

ON: \quad The color system is displayed (this is the default setting).
OFF: The color system is not displayed.
5.3.5 Selecting the Timecode Display Format

When you have set F•3 TIME to TIMECODE, follow the procedure below to set the timecode display format.

Procedure

SYSTEM \rightarrow F•3 DISPLAY \rightarrow F•1 INFORMATION \rightarrow F•5 TIMECODE

Settings

LTC: \quad The LTC timecode is displayed.
VITC: \quad The VITC timecode is displayed (this is the default setting).
D-VITC: The D-VITC timecode is displayed. This setting is not valid when the LV 5330 is in dual link mode.

5.3.6 Setting the Backlight Brightness

To set the backlight brightness, follow the procedure below.
Procedure

$$
\text { SYSTEM } \rightarrow \text { F•3 DISPLAY } \rightarrow \text { F•2 BACK LIGHT }
$$

Settings

HIGH: The backlight is lit brightly (this is the default setting).
LOW: The backlight is lit dimly. Use this setting in dark locations when the HIGH setting feels too bright.

5.3.7 Setting the Backlight Auto Shutoff Time

To set the backlight auto shutoff time, follow the procedure below. After the backlight has been automatically shut off, it will turn on again when any key other than the power key is pressed.
Try to limit the number of times that the backlight turns on and off to a few times a day. Turning the backlight on and off frequently will reduce its longevity.

Procedure

$$
\text { SYSTEM } \rightarrow \text { F•3 DISPLAY } \rightarrow \text { F•3 AUTO OFF }
$$

Settings

OFF: \quad The backlight is not shut off automatically (this is the default setting).
$5 \mathrm{~min}: \quad$ The backlight is shut off after five minutes of user inactivity.
30min: The backlight is shut off after 30 minutes of user inactivity.
60 min : The backlight is shut off after 60 minutes of user inactivity.

5.3.8 Displaying the Amount of Remaining Battery Power

When you use a battery, follow the procedure below to display the remaining battery power on the screen.
The battery adapter is optional. Regardless of the setting made here, the LV 5330 will not display the remaining battery power if the optional battery adapter is not installed.

Procedure
SYSTEM \rightarrow F•3 DISPLAY \rightarrow F•5 BATTERY

Settings

IDX: The remaining battery power is displayed correctly when the LV 5330 is equipped with a battery produced by IDX System Technology (this is the default setting).
ANTON: The remaining battery power is displayed correctly when the LV 5330 is equipped with a battery produced by Anton/Bauer.
OTHERS: The remaining battery power is displayed correctly when the LV 5330 is equipped with a lithium 14.4 V battery produced by a company such as Sony.
OFF: The remaining battery power is not displayed.

5.3.9 Lighting the Key LEDs

By default, you can light all the key LEDs by pressing SHORT CUT. To have the key LEDs lit at all times, follow the procedure below.

Procedure
SYSTEM \rightarrow F•3 DISPLAY \rightarrow F•6 LIGHT
Settings
AUTO: If F•6 SHORTCUT KEY SET is set to LIGHT, all the key LEDs light when you press SHORT CUT. This is the default setting.
ON: All the key LEDs are lit at all times.

5.4 Configuring the External Interface

To configure the external interface settings, press F•4 INTRFACE\&LICENSE in the system menu. A menu appears for configuring remote control, Ethernet, and license settings.
$\overline{\text { SYSTEM }} \rightarrow$ F•4 INTRFACE\&LICENSE \rightarrow

REMOTE BIT	ETHERNET	SNMP OFF	LICENSE SETUP		

Figure 5-4 INTRFACE\&LICENSE menu

5.4.1 Selecting the Method for Loading Presets

You can load presets using remote control connector pins /P1 through /P8. There are two different methods for loading presets. To choose which method to use, follow the procedure below.
Reference: Section 17.1, "Remote Control Feature"

Procedure

SYSTEM \rightarrow F•4 INTRFACE\&LICENSE \rightarrow F•1 REMOTE

Settings

BIT: $\quad /$ P1 through /P8 are assigned to preset numbers 1 through 8, and you can load one of eight presets. This is the default setting.
BINARY: /P5 is set to the MSB, and /P1 is set to the LSB. You can load one of 30 presets by specifying a binary value.

5.4.2 Configuring Ethernet Settings

To configure Ethernet settings, press $\mathrm{F} \cdot 2$ ETHERNET in the system menu. The settings configured here are valid after you restart the LV 5330. These settings are not initialized even if you initialize the LV 5330 by following the procedure in section 5.7.1, "Initializing the Settings Using SETUP INIT."

SYSTEM \rightarrow F•4 INTRFACE\&LICENSE \rightarrow F•2 ETHERNET \rightarrow

Figure 5-5 ETHERNET menu
First, follow the procedure below to choose DHCP or IP.

Procedure

SYSTEM \rightarrow F•4 INTRFACE\&LICENSE \rightarrow F•2 ETHERNET \rightarrow F•1 DHCP/IP SELECT

Settings

DHCP: The IP_ADDRESS, SUBNET_MASK, and GATEWAY settings are all configured automatically using DHCP (this is the default setting).
IP: The IP_ADDRESS, SUBNET_MASK, and GATEWAY settings must be configured automatically.

If you select IP, follow the procedure below to set IP_ADDRESS, SUBNET_MASK, and GATEWAY. If you select DHCP, F•2 IP ADRS, F•3 SUBNET MASK, and F•4 GATEWAY will not appear.

Procedure

1.	$F \cdot 2$ IP ADRS or $F \cdot 3$ SUBNET MASK or $F \cdot 4$ GATEWAY	(Select an item.)
2.	$F \cdot D$	
3.	Press $F \cdot 5 \rightarrow$ or $F \cdot D$	(Set the value of the item.)
(Move the cursor.)		

Settings

Selectable range: 0 to 255 (The default setting is 0 .)

5.4.3 Setting the SNMP Mode

To select the SNMP access mode, follow the procedure below.

Procedure

SYSTEM \rightarrow F•4 INTRFACE\&LICENSE \rightarrow F•3 SNMP

Settings

OFF: \quad Settings cannot be read or written (this is the default setting).
IP: \quad Settings can be read, but they cannot be written.
WRITE: Settings can be read and written.

5.4.4 Configuring License Settings

To use an option that requires a license, you must enter the appropriate license key.
A license key is a key code that activates an option on the LV 5330. Leader will send you a license key when you purchase an option. When purchasing an option tell us the MAC address and the serial number of your LV $5330 .{ }^{* 1}{ }^{* *}$ 苂 Each LV 5330 requires a unique license key. You cannot use the same key for multiple instruments.
*1 You can view the MAC address from the license display.
*2 The serial number is printed on a label on the rear panel.
To install an option, follow the procedure below.
Even if you initialize the LV 5330, the options that you install through this procedure will not be uninstalled.

1. Press SYSTEM.
2. Press $\mathrm{F} \cdot 4$ INTRFACE\&LICENSE.
3. Press $\mathrm{F} \cdot 4$ LICENSE SETUP.

The license display appears.
In this display, you can check the MAC address, firmware version, and registered options.

Figure 5-6 License display
4. Enter the 10 -digit license key number for the option that you want to install.

The key operations that you can perform in the license display are as follows:
F•1 CLEAR ALL: Deletes the license key that you are currently entering
F•3 $\leftarrow: \quad$ Moves the cursor to the left
F.4 \rightarrow : Moves the cursor to the right
F. 5 CHAR SET: Enters the selected number

F•D: \quad Turn to select a number, and press to enter the number

5. Press $F \cdot 6$ REGISTER.

If the license key was entered correctly, the option name is added to the LICENSE LIST, and the option can now be used.
"FAILED" appears if the license key is not correct. Reenter the license key correctly.

5.5 Setting the Date and Time

To set the date and time, press F-5 DATE\&TIME in the system menu.
The date and time that you set here will not be initialized even if you initialize the settings by following the procedure described in section 5.7, "Initialization."

SYSTEM \rightarrow F•5 DATE\&TIME \rightarrow

$\begin{aligned} & \hline \text { YEAR } \\ & 2008 \end{aligned}$	$\begin{gathered} \text { MONTH } \\ 5 \end{gathered}$	DAY	HOUR 10	$\begin{gathered} \hline \text { MINUTE } \\ 8 \end{gathered}$	SECOND 59	CLOCK SET
F. 1	FF.2 FF.3 FF.4 FF.5 FF.6 F.7					

Figure 5-7 DATE\&TIME menu
To set the date and time, follow the procedure below. When you press F•7 CLOCK SET, the clock is set to the time that you have selected. To cancel the date and time settings, press SYSTEM.

Procedure

1. SYSTEM $\rightarrow F \cdot 5$ DATE\&TIME
2. Press $F \cdot 1$ YEAR $\rightarrow F \cdot D$ (Set the year.)
3. Press $F \cdot 2$ MONTH $\rightarrow \mathbb{F} \cdot \square$ (Set the month.)
4. Press $\mathrm{F} \cdot 3 \mathrm{DAY} \rightarrow \mathrm{F} \cdot \mathrm{D}$
(Set the day of the month.)
5. Press $\mathrm{F} \cdot 4$ HOUR $\rightarrow \mathrm{F} \cdot \mathrm{D}$
(Set the hour.)
6. Press $F \cdot 5$ MINUTE $\rightarrow F \cdot D$
(Set the minute.)
7. Press $\mathrm{F} \cdot 6$ SECOND $\rightarrow \mathrm{F} \cdot \mathrm{D}$
(Set the second.)
8. F•7 CLOCK SET
(Confirm the settings you have made.)

5.6 Assigning a Function to the SHORT CUT Key

To assign a function to the SHORT CUT key on the front panel, follow the procedure below.

Procedure

SYSTEM \rightarrow F• 6 SHORTCUT KEY SET

Settings
LIGHT: Pressing the SHORT CUT key makes all of the key LED lights. Use this setting in dark locations when it is difficult to determine where the keys are. The key LED lights turn off after an operation has been performed. This is the default setting.
CAP USB: Pressing the SHORT CUT key causes the LV 5330 to capture the current display and save it to USB memory in the specified format.
DIRECT_K: Pressing the SHORT CUT key causes the LV 5330 to load the registered preset. To register a preset, follow this procedure:

1. Set the LV 5330 to the settings that you want to register.
2. Press MEMORY.
3. Press SHORT CUT. The SHORT CUT key LED blinks twice, and the preset is registered.
VOLUME: Pressing the SHORT CUT key allows you to adjust the headphone volume with $\mathrm{F} \cdot \mathrm{D}$ (the function dial). The function dial reverts to its ordinary function after an operation has been performed.
CONTRAST: Pressing the SHORT CUT key switches the picture display contrast in this order: 50\%, 100\%, and 200\%.

5.7 Initialization

There are two different ways to initialize the settings. One is to select SETUP INIT from the system menu, and the other is to follow a special procedure after restarting the LV 5330. The table below indicates which settings are initialized for each method. "Yes" means that a setting is initialized. "No" means that a setting is not initialized.

Table 5-2 Settings That Are Initialized

Item	SETUP INIT	Restart
Ethernet settings	No	Yes
Presets*	No	Yes
User-defined correction tables for the CINELITE display	No	Yes
Date and time	No	No
License settings	No	No

* Includes the preset that is assigned to the SHORT CUT key.

All of the settings that are not listed in the table are initialized by both methods. For information about the initial settings, see section 19.1, "Menu Tree." The initial settings are underlined.

5.7.1 Initializing the Settings Using SETUP INIT

To initialize the settings from the system menu, press F•7 SETUP INIT.
SYSTEM \rightarrow F. 7 SETUP INIT

INIT YES		INIT CANGEL			

Figure 5-8 SETUP INIT menu
To initialize the settings, follow the procedure below. To cancel the initialization of the settings, press F•3 INIT CANCEL.

Procedure
SYSTEM \rightarrow F•7 SETUP INIT \rightarrow F•1 INIT YES
5.7.2 Initializing the Settings by Restarting the LV 5330

To initialize the settings by restarting the LV 5330, follow the procedure below.

Procedure

1. Turn off the power.
2. Turn on the power while holding down V POS and H POS.
3. Release V POS and H POS when the following message appears.

ERROR_SRAM FILE SYSTEM
PRESET DATA LOST!!!
PUSH [WFM] KEY
4. Press WFM.

6. Presets

You can use the preset feature to register and load panel settings. Also, you can use the same settings on multiple LV 5330s by copying presets to USB memory.

You cannot register date and time or Ethernet settings. Registered presets are not deleted even if you initialize the LV 5330 by following the procedure in section 5.7.1, "Initializing the Settings Using SETUP INIT."

6.1 Registering Presets

To register a preset, follow the procedure below.

Figure 6-1 Registering presets

1. Set the LV 5330 to the settings that you want to register.
2. Press MEMORY.

The file list display appears.
3. Press $F \cdot 1$ COMMENT INPUT.

The file name input display appears.
4. Enter a file name using up to $\mathbf{1 6}$ characters.

The key operations on the file name input display are as follows:
F•1 CLEAR ALL Clears all characters.
F•2 DELETE Deletes the character above the cursor.
F•3 INSERT Inserts a space at the cursor position.
$\mathrm{F} \cdot 4 \leftarrow \quad$ Moves the cursor to the left.
F•5 $\rightarrow \quad$ Moves the cursor to the right.
F-6 CHAR SET Enters a character.
$\mathrm{F} \cdot \mathrm{D}$ Turn to select a character, and press to enter the character.
5. Press $\mathrm{F} \cdot 7$ up menu.
6. Turn $F \cdot D$ to select the file number of the file you want to register.
7. Press $\mathrm{F} \cdot 2$ Store.
8. Press F•1 STORE YES.

If a file has already been stored with the file number that you selected, the previous file is overwritten. To cancel the registration of the preset, press F-3 STORE NO.

6.2 Loading Presets

To load a preset, follow the procedure below.
If SHORTCUT KEY SET in the system settings has been set to DIRECT_K, you can load a preset simply by pressing SHORT CUT.

Reference: SHORTCUT KEY SET \rightarrow Section 5.6, "Assigning a Function to the SHORT CUT Key"

Figure 6-2 Loading presets

1. Press RECALL.

The preset menu appears.
2. Press a function key from $F \cdot 1$ No. 1 to $F \cdot 6$ No.6.

If the preset number that you want to load is greater than 6 , press F. 7 more.

6.3 Deleting Presets

To delete a preset, follow the procedure below.

Figure 6-3 Deleting presets

1. Press MEMORY.

The file list display appears.
2. Turn $F \bullet D$ to select the file number of the file you want to delete.
3. Press F•3 DELETE.
4. Press $F \cdot 1$ DELETE YES.

To abort the deletion of the selected preset, press F•3 DELETE NO.

6.4 Copying Presets

To copy a preset file in the file list display, follow the procedure below.

Figure 6-4 Copying presets

1. Press MEMORY.

The file list display appears.
2. Turn $F \cdot D$ to select the file number of the file you want to copy from.
3. Press F•4 RECALL.

The name of the file that you select appears in SETUP MEMORY COMMENT.
4. Turn $F \cdot D$ to select the file number of the file you want to copy to.
5. Press F•2 STORE.

6.5 Copying All Presets

You can copy all of the presets by using F•5 ALL COPY FROM USB and F•6 ALL COPY TO USB in the preset registration menu.

Figure 6-5 Copying all presets
6.5.1 Copying Presets from USB Memory to the LV 5330

To copy all of the presets that have been saved to USB memory to the LV 5330, follow the procedure below.
If presets have already been saved to the LV 5330 memory, they will be overwritten.
To cancel the copy operation, press F•3 COPY NO.

Procedure

$$
\text { MEMORY } \rightarrow \text { F•5 ALL COPY FROM USB } \rightarrow \text { F•1 COPY YES }
$$

6.5.2 Copying Presets from the LV 5330 to USB Memory

To copy all of the presets that have been saved to the LV 5330 to USB memory, follow the procedure below.
If presets have already been saved to the USB memory, they will be overwritten.
To cancel the copy operation, press F•3 COPY NO.
The file structure in the USB memory is shown below. Note that the file numbers in the USB memory are different from the LV 5330 file numbers by one.
If you change the file names in the USB memory, you will not be able to copy the files from the USB memory to the LV 5330.

B USB memory
LG SETUP
L $\square 00 . \mathrm{LVX}$ (to 29.LVX)
Presets No. 1 to 30
Procedure
MEMORY \rightarrow F•6 ALL COPY TO USB \rightarrow F•1 COPY YES

7. Screen Capture Feature

You can use the screen capture feature to acquire still image data of the current display. You can save the acquired data to USB memory or overlay it on the input signal and display it using the LV 5330.

Figure 7-1 Screen capture feature

7.1 Taking a Screen Capture of the Display

To take a screen capture of the display, follow the procedure below.

Figure 7-2 Taking a screen capture of the display

1. Configure the LV 5330 so that the display that you want to capture appears on the screen.

Only measurement displays can be captured. The file list display and the USB memory display cannot be captured.
2. Press CAPTURE.

When you press CAPTURE, the LV 5330 takes a screen capture of the display. You can also take screen captures by pressing $\mathrm{F} \cdot 1 \mathrm{HOLD}$ while the screen capture menu is displayed.

Note that if you perform one of the following operations after capturing a display, the captured data will be cleared.

- Change the display mode.
- Press SYSTEM, MEMORY, or RECALL.
- Turn off the power.

7.2 Displaying Screen Capture Data on the LV 5330

The data that you capture by following the procedure in section 7.1, "Taking a Screen Capture of the Display," can be displayed, or it can be overlaid on the current input signal. To display or overlay the captured data, follow the procedure below.

Figure 7-3 Displaying screen capture data

1. Press $\mathrm{F} \cdot 2$ DISPLAY, and select the display format.

The display formats that you can select are explained below.
REAL The input signal is displayed (this is the default setting).
HOLD The screen capture data is displayed.
BOTH The input signal and the captured data are displayed on top of each other with their intensities halved.

You can display the captured data of video signal waveforms, vectors, pictures, and audio meters on the LV 5330. Other kinds of data (CINELITE, CINEZONE, status, and 5-bar) cannot be displayed. However, these other kinds of data can be saved to USB memory as BMP files.
For details, see section 7.3, "Saving Screen Capture Data to USB Memory."

7.3 Saving Screen Capture Data to USB Memory

The data that you capture by following the procedure in section 7.1, "Taking a Screen Capture of the Display," is cleared when operations such as changing the display mode are performed. However, you can display the captured data on the LV 5330 even after the power has been turned off by saving it to USB memory (if you save it in BSX format).
You can also view captured data on a PC (if you save it in BMP format).
If you set SHORTCUT KEY SET in the system settings to CAP USB, you can save the current display to USB memory simply by pressing SHORT CUT.

Reference: SHORTCUT KEY SET \rightarrow Section 5.6, "Assigning a Function to the SHORT CUT Key"

Figure 7-4 Saving screen capture data

1. Press $\mathrm{F} \bullet 4$ TYPE SELECT to select the file format that you want to save the screen capture data in.

The file formats that you can select are explained below.
BMP\&BSX The screen capture data is saved to a BMP file and a BSX file in the USB memory. You can view the saved data on a PC or on the LV 5330. This is the default setting.
BMP The screen capture data is saved to a BMP file in the USB memory. You can view the saved data on a PC.
BSX The screen capture data is saved to a BSX file in the USB memory. You can view the saved data on the LV 5330.
2. Press $F \cdot 3$ STORE USB.

The captured data is saved to the USB memory.
The file name is automatically set to "CAP" + the date and time that have been set using the system settings.
The date is written using the format that has been specified in the system settings. The time is written in this order: hour, minute, second.
Example: CAP20080501100859.BMP
The file structure in the USB memory is shown below.
B USB memory
L BMP

- \square CAP ${ }^{* * * * * * * * h h m m s s . B M P ~}$

L CAP C*******hhmmss.BSX

7.4 Viewing Screen Capture Data from USB Memory

The screen capture data that you save in BSX format by following the procedure in section 7.3, "Saving Screen Capture Data to USB Memory," can be displayed, or it can be overlaid on the current input signal. Screen capture data that has been saved in BMP format cannot be displayed on the LV 5330.

Figure 7-5 Viewing screen capture data from USB memory

1. Press CAPTURE.
2. Press $F \cdot 5$ USB MEMORY.

The file list display appears
F-5 USB MEMORY appears when USB memory is connected to the LV 5330.
3. Turn $F \cdot D$ to select the file number of the file you want to display.
4. Press F•4 RECALL USB.
F.4 RECALL appears when the selected file is a BSX file.
5. Press $\mathrm{F} \cdot 2$ DISPLAY, and select the display format.

After you press F•4 RECALL USB, the display format is BOTH. For details about the different display formats, see section 7.2, "Displaying Screen Capture Data on the LV 5330."

7.5 Deleting Screen Capture Data from USB Memory

To delete the screen capture data that you save by following the procedure in section 7.3, "Saving Screen Capture Data to USB Memory," follow the procedure below. You can also delete screen capture data from USB memory using a PC.

Figure 7-6 Deleting screen capture data from USB memory

1. Press CAPTURE.
2. Press $\overline{F \cdot 5}$ USB MEMORY.

The file list display appears.
F-5 USB MEMORY appears when USB memory is connected to the LV 5330.
3. Turn $F \cdot D$ to select the file number of the file you want to delete.
4. Press $\mathrm{F} \cdot 3$ FILE DELETE.

F•3 FILE DELETE appears when there are files in USB memory.

5. Press $\mathrm{F} \cdot 1$ DELETE YES.

To abort the deletion of the selected screen capture data file, press F•3 DELETE NO.

8. Picture Display

8.1 Picture Display Explanation

To make the picture display appear, press PICTURE.

Figure 8-1 Picture display

Table 8-1 Picture display explanation

No.	Item	Explanation
1	Aspect marker	You can display a marker for the selected aspect ratio in relation to the frame. Reference: Section 8.3.1, "Displaying an Aspect Marker"
2	Safe action marker	You can display a marker of a selected size in relation to the frame or aspect marker. Reference: Section 8.3.2, "Displaying a Safe Action Marker"
3	Safe title marker	You can display a marker of a selected size in relation to the frame or aspect marker. Reference: Section 8.3.3, "Displaying a Safe Title Marker"
4	Selected line	You can display a marker on the selected line. Reference: Section 8.4, "Line Selection Settings"
5	Center marker	You can display a marker in the center of the picture that is 10 \% the size of the frame. Reference: Section 8.3.4, "Displaying a Center Marker"
6	Brightness and contrast display	The brightness and contrast of the picture are displayed. The brightness and contrast can be adjusted at all levels of the picture display. Reference: Section 8.2, "Setting the Brightness and Contrast"

8.2 Setting the Brightness and Contrast

You can set the brightness and contrast of the picture by using BRIGHT and CONT. The brightness and contrast can be adjusted at all levels of the picture display. The current brightness and contrast settings appear in the lower right of the display.
The settings made here do not affect the CINELITE display, CINEZONE display, or multi-screen display.

8.2.1 Adjusting the Brightness

You can adjust the brightness of the picture by turning BRIGHT.
Pressing BRIGHT returns the brightness to its default setting (0 \%).
Settings
Selectable range: -50% to 50% (The default value is 0%.)
8.2.2 Adjusting the Contrast

You can adjust the contrast of the picture by turning CONT. Pressing CONT returns the contrast to its default setting (100 \%).

Regardless of this setting, when the multi-screen display format is set to PIC+WFM or PIC+VECT, the contrast is fixed at 60%. If you set SHORTCUT KEY SET in the system settings to CONTRAST, you will be able to press SHORT CUT on the front panel to switch the contrast in this order: $50 \%, 100 \%$, and 200%.
Reference: MODE \rightarrow Section 16.1, "Selecting the Multi-Screen Display Format"
SHORTCUT KEY SET \rightarrow Section 5.6, "Assigning a Function to the SHORT CUT Key"

Settings

Selectable range: 50% to 200% (The default value is 100%.)

8.3 Marker Settings

To configure marker settings, press $\mathbb{F} \cdot 1$ MARKER in the picture menu. You can use the menu that appears to configure the display settings for every type of marker.
The markers that you set here do not appear in the multi-screen display. F•1 MARKER appears when SIZE is set to FIT and CC is set to OFF.
Reference: SIZE \rightarrow Section 8.5, "Selecting the Picture Display Size"

$$
\text { CC } \rightarrow \text { Section 8.5.1, "Displaying Closed Captions" }
$$

PICTURE \rightarrow F•1 MARKER \rightarrow

ASPECT 0FF	SAFE ACTION OFF	SAFE TITLE 0FF	CENTER 0FF	SHADOW 0FF		up menu
$\square \mathrm{F} \cdot 1$	$\mathrm{F} \cdot 2$	F.3	F.4	F.5	F-6	F.7

Figure 8-2 MARKER menu

8.3.1 Displaying an Aspect Marker

To display an aspect marker, follow the procedure below.
An aspect marker is displayed as white lines. You can also shade the area outside of the aspect marker.
Reference: Section 8.3.5, "Shading the Area Outside of an Aspect Marker"
Procedure

$$
\text { PICTURE } \rightarrow \text { F•1 MARKER } \rightarrow \text { F•1 ASPECT }
$$

Settings

2.35:1: A 2.35:1 aspect marker is displayed.
1.85:1: A 1.85:1 aspect marker is displayed.
1.66:1: \quad A 1.66:1 aspect marker is displayed.

14:9: \quad A 14:9 aspect marker is displayed.
13:9: \quad A 13:9 aspect marker is displayed.
4:3: \quad A 4:3 aspect marker is displayed. This setting cannot be selected when the input signal is SD-SDI and SQUEEZE is set to OFF.
16:9: A 16:9 aspect marker is displayed. This setting cannot be selected when the input signal is HD-SDI or SD-SDI and SQUEEZE is set to ON.
OFF: \quad An aspect marker is not displayed. This is the default setting.

Figure 8-3 Aspect markers

8.3.2 Displaying a Safe Action Marker

To display a safe action marker, follow the procedure below.
Procedure

$$
\text { PICTURE } \rightarrow \text { F•1 MARKER } \rightarrow \text { F•2 SAFE ACTION }
$$

Settings

95\%: A safe action marker whose size is 95% that of the frame (or aspect marker if an aspect marker is being displayed) is displayed.
93\%: A safe action marker whose size is 93% that of the frame (or aspect marker if an aspect marker is being displayed) is displayed.
90% : A safe action marker whose size is 90% that of the frame (or aspect marker if an aspect marker is being displayed) is displayed.
OFF: A safe action marker is not displayed. This is the default setting.
8.3.3 Displaying a Safe Title Marker

To display a safe title marker, follow the procedure below.
Procedure

$$
\text { PICTURE } \rightarrow \text { F•1 MARKER } \rightarrow \text { F•3 SAFE TITLE }
$$

Settings

88% : A safe title marker whose size is 88% that of the frame (or aspect marker if an aspect marker is being displayed) is displayed.
80% : A safe title marker whose size is 80% that of the frame (or aspect marker if an aspect marker is being displayed) is displayed.
OFF: A safe title marker is not displayed. This is the default setting.

8.3.4 Displaying a Center Marker

To display a center marker, follow the procedure below.
The center marker is displayed in the center of the frame at 10% of the frame's size.
Procedure
PICTURE \rightarrow F•1 MARKER \rightarrow F•4 CENTER

Settings

ON: A center marker is displayed.
OFF: A center marker is not displayed. This is the default setting.
CENTER $=$ ON

Figure 8-4 Center marker
8.3.5 Shading the Area Outside of an Aspect Marker

To shade the area outside of an aspect marker, follow the procedure below.

Procedure

$$
\text { PICTURE } \rightarrow \text { F•1 MARKER } \rightarrow \text { F•5 SHADOW }
$$

Settings

ON: The LV 5330 shades the area outside of the aspect marker. This setting is not valid when $\mathrm{F} \cdot 1$ ASPECT is set to OFF.
OFF: Only the aspect marker is displayed. This is the default setting.

Figure 8-5 Aspect marker settings

8.4 Line Selection Settings

To configure line selection settings, press $\mathrm{F} \cdot 2$ LINE SELECT in the picture menu. The line selection feature allows you to display a marker on the selected line.
The markers that you set here do not appear in the CINELITE or CINEZONE display.
F•2 LINE SELECT appears when SIZE is set to FIT.
Reference: SIZE \rightarrow Section 8.5, "Selecting the Picture Display Size"
PICTURE \rightarrow F• 2 LINE SELECT \rightarrow

Figure 8-6 LINE SELECT menu

8.4.1 Displaying a Marker on the Selected Line

To display a marker on the selected line, follow the procedure below.
Changing this setting will also change the video signal waveform display and vector display line selection settings.

Procedure

$$
\text { PICTURE } \rightarrow \text { F•2 LINE SELECT } \rightarrow \text { F•1 LINE SELECT }
$$

Settings

ON: A marker appears on the selected line.
OFF: A marker does not appear on the selected line. This is the default setting.
LINE SELECT $=$ ON

Figure 8-7 Line select display

8.4.2 Selecting a Line

To select a line to display a marker on, follow the procedure below. The selected line is indicated in the lower left of the display.
Changing this setting will also change the selected line in the CINELITE, video signal waveform, vector, and status (data dump) displays.

Procedure

```
PICTURE }->\mathrm{ F•2 LINE SELECT }->\mathrm{ F•D
```


8.4.3 Setting the Line Selection Range

To set the line selection range, follow the procedure below.
F•2 FIELD appears when the input format is set to interlaced or segmented frame.
Changing this setting will also change the video signal waveform display and vector display line selection ranges.

Procedure

$$
\text { PICTURE } \rightarrow \text { F•2 LINE SELECT } \rightarrow \text { F•2 FIELD }
$$

Settings (the examples are the selectable ranges when the input format is 1080i/59.94)
FIELD1: A line from field one can be selected.
(Example: 1 to 563.)
FIELD2: A line from field 2 can be selected.
(Example: 564 to 1125.)
FRAME: All lines can be selected. This is the default setting. (Example: 1 to 1125.)

8.5 Other Settings

To configure other settings, press F•3 ETC in the picture menu. You can configure closed caption and gamut error display settings from this menu.
When the LV 5330 is in dual link mode, $\mathrm{F} \cdot 1 \mathrm{CC}$ is not displayed.
PICTURE \rightarrow F•3 ETC \rightarrow

Figure 8-8 ETC menu

8.5.1 Displaying Closed Captions

To display SMPTE closed captions, follow the procedure below.
If you select a setting other than OFF, no markers are displayed.

Procedure

$$
\text { PICTURE } \rightarrow \text { F•3 ETC } \rightarrow \text { F•1 CC } \rightarrow \text { F•2 CC }
$$

Settings

OFF: \quad Closed captions are not displayed. This is the default setting.
CC1: SMPTE CC1 is displayed.
CC2: SMPTE CC2 is displayed.
CC3: SMPTE CC3 is displayed.
CC4: SMPTE CC4 is displayed.
TEXT1: SMPTE TEXT1 is displayed.
TEXT2: SMPTE TEXT2 is displayed.
TEXT3: SMPTE TEXT3 is displayed.
TEXT4: SMPTE TEXT4 is displayed.

8.5.2 Selecting the Closed Caption Format

To select the format of SMPTE closed captions, follow the procedure below.
Procedure

$$
\text { PICTURE } \rightarrow \text { F•3 ETC } \rightarrow \text { F•1 CC } \rightarrow \text { F•1 SYSTEM }
$$

Settings
608(708): Display CEA/EIA-608-B closed caption data that is embedded in EIA-708-B CDP packets. This is the default setting.
608(608): Display CEA/EIA-608-B closed caption data.
VBI: Display CEA/EIA-608-B closed caption data that is embedded in vertical blanking intervals.

8.5.3 Displaying Gamut Errors

To display the locations where gamut errors or composite gamut errors are occurring over the picture, follow the procedure below. If the detected value is greater than the upper limit, a red mesh pattern indicates the error location. If the detected value is less than the lower limit, a black mesh pattern indicates the error location.
Gamut errors are displayed if GAMUT ERROR on the status menu is set to ON. Composite gamut errors are displayed if C.GAMUT ERROR is set to ON. Additionally, you can use the GAMUT and COMPOSIT GAMUT settings on the status menu to set the levels that are used to detect errors.
Gamut errors are not displayed on the CINELITE, CINEZONE, and multi-screen displays.
Reference: GAMUT ERROR, C.GAMUT ERROR \rightarrow Section 14.6.3, "Configuring Error Detection Settings"
GAMUT \rightarrow Section 14.6.7, "Setting Gamut Error Detection Levels"
COMPOSIT GAMUT \rightarrow Section 14.6.8, "Setting Composite Gamut Error Detection Levels"

Procedure

PICTURE \rightarrow F•3 ETC \rightarrow F•4 GAMUT ERROR

Settings

DISP ON: Gamut error is displayed.
DISP OFF: Gamut error is not displayed. This is the default setting.

GAMUT ERROR = DISP ON

GAMUT ERROR = DISP OFF

Figure 8-9 Gamut error display

8.6 Display Settings

To configure the display settings, press $\mathrm{F} \bullet 4$ DISPLAY in the picture menu.
From this menu, you can turn on or off each RGB channel and configure the display size, squeezed image display, and IP conversion settings.

PICTURE \rightarrow F•4 DISPLAY \rightarrow

Figure 8-10 DISPLAY menu

8.6.1 Selecting the Picture Display Size

To set the picture display size, follow the procedure below.
Regardless of the setting made here, the picture is displayed using the FIT setting in the CINELITE, CINEZONE, and multi-screen displays.

Procedure
PICTURE $\rightarrow \mathrm{F} \cdot 4$ DISPLAY $\rightarrow \mathrm{F} \cdot 1$ SIZE

Settings

FIT: \quad The picture size is adjusted to the most suitable size for the screen. This is the default setting.
$x 1: \quad$ A single sample of the video signal is displayed with a single pixel on the screen. The marker and line select features cannot be used.
When the input signal is HD-SDI, you can use the control stick to adjust the location of the picture. Approximately five seconds after the last operation is performed, the menu and the information displays at the top of the screen disappear. To redisplay the menu and information, perform some kind of operation.
x2: \quad A single sample of the video signal is displayed with a four pixels on the screen. The marker and line select features cannot be used.
You can use the control stick to adjust the location of the picture.
Approximately five seconds after the last operation is performed, the menu and the information displays at the top of the screen disappear. To redisplay the menu and information, perform some kind of operation.
FULL: The picture is displayed so that it takes up the whole screen. The marker and line select features cannot be used.
When the input signal is HD-SDI, the sides of the picture are cut off to display it.

Approximately five seconds after the last operation is performed, the menu and the information displays at the top of the screen disappear. To redisplay the menu and information, perform some kind of operation.

SIZE = FULL

Figure 8-11 Picture display sizes

8.6.2 Turning R, G, and B ON or OFF

To turn the display of the individual R, G, and B signals ON or OFF, follow the procedure below. You cannot turn all the signals OFF.

Procedure

$$
\text { PICTURE } \rightarrow \text { F•4 DISPLAY } \rightarrow \text { F•3 RGB }
$$

Settings

RGB: All the RGB signals are displayed. This is the default setting.
MONO: The picture is displayed in monochrome.
RG-: \quad The R and G signals are displayed.
$R-B$: \quad The R and B signals are displayed.
-GB: \quad The G and B signals are displayed.
R--: \quad The R signal is displayed.
-G-: \quad The G signal is displayed.
--B: The B signal is displayed.

8.6.3 Displaying Squeezed Images

To horizontally expand and display squeezed images, follow the procedure below.
This setting is valid when the input signal is SD-SDI and SIZE is set to FIT.
Regardless of the setting made here, the picture is displayed using the OFF setting in the CINELITE and CINEZONE displays.
Reference: SIZE \rightarrow Section 8.5, "Selecting the Picture Display Size"
Procedure

$$
\text { PICTURE } \rightarrow \text { F•4 DISPLAY } \rightarrow \text { F•4 SQUEEZE }
$$

Settings

ON: Images with an aspect ratio of 4:3 are expanded horizontally and displayed with an aspect ratio of 16:9.
OFF: \quad No image expansion is performed. This is the default setting.

8.6.4 Performing IP Conversion

To convert an interlaced signal to a progressive signal and display it, follow the procedure below. This setting is valid when the input signal is SD-SDI and SIZE is set to $x 1$ or $\times 2$. This menu item does not appear when input signal is HD-SDI.
Reference: SIZE \rightarrow Section 8.5, "Selecting the Picture Display Size"
Procedure

$$
\text { PICTURE } \rightarrow \text { F•4 DISPLAY } \rightarrow \text { F•5 IP_CONV }
$$

Settings

ON: IP conversion is performed. This is the default setting.
OFF: IP conversion is not performed.

8.7 Adjusting the Chroma Gain

To adjust the chroma gain, follow the procedure below. If you press $\mathrm{F} \cdot \mathrm{D}$, the chroma gain will be reset to its default value of 100 .
Regardless of the setting made here, the picture is displayed using a chroma gain of 100 in the CINELITE and CINEZONE displays.

Procedure
PICTURE \rightarrow F. 5 CHROMA\%

Settings

Selectable range: 0 to 150 (The default setting is 100.)

8.8 Adjusting the Aperture

To adjust the aperture, follow the procedure below. A larger number will result in more well-defined outlines. If you press F•D, the aperture will be reset to its default value of 0 .

Procedure
PICTURE \rightarrow F•6 APERTURE

Settings

Selectable range: 0 to 200 (The default setting is 0 .)

APERTURE $=0$

Figure 8-12 Aperture settings

9. CINELITE Display

In the CINELITE display, you can display the luminance levels of up to three points on the picture that you have selected. To show the CINELITE display, press CINELITE.

CINELITE \rightarrow

f_Stop DISPLAY	\%DISPLAY	CINELITE ADVANGE OFF		GAMMA USER-1	CAL

Figure 9-1 CINELITE menu
You can choose one of the following luminance level display formats.

- f Stop level (f Stop display)
\rightarrow Section 9.5, "Displaying Luminance Levels as f Stop Numbers"
- Luminance level (percentage)
\rightarrow Section 9.6, "Displaying Luminance Levels as Percentages or RGB Values"
- RGB level (percentage)
\rightarrow Section 9.6, "Displaying Luminance Levels as Percentages or RGB Values"
- RGB level (256 levels)
\rightarrow Section 9.6, "Displaying Luminance Levels as Percentages or RGB Values"

9.1 Selecting the Points to Measure

You can set up to three points to measure. To select which measurement point positions you will specify with the cursor, follow the procedure below.
The F•2 MEAS POS settings in the menus accessed by pressing F•1 f_Stop DISPLAY and F•2 \%DISPLAY are the same.

Procedure

$\begin{aligned} \text { CINELITE } & \rightarrow \mathrm{F} \cdot 1 \mathrm{f} \text { Stop DISPLAY } \rightarrow \mathrm{F} \cdot 2 \text { MEAS POS } \\ & \rightarrow \mathrm{F} \cdot 2 \% \text { DISPLAY } \rightarrow \mathrm{F} \cdot 2 \mathrm{MEAS} \text { POS }\end{aligned}$

Settings

P1: You can use the cursor to select the position of measurement point 1. This is the default setting.
P2: \quad You can use the cursor to select the position of measurement point 2.
P3: \quad You can use the cursor to select the position of measurement point 3.

9.2 Moving the Cursors

To set a measurement point, you must select a measurement point by pressing F•2 MEAS POS and then move the X and Y cursors to the point you want to measure. You can use the Y cursor to select a line and the X cursor to select a sample. The X and Y cursors are not displayed if they are within a blanking interval.

The measurement point settings made in the menus accessed by pressing F•1 f_Stop DISPLAY and F•2 \%DISPLAY are the same. Changing the position of the Y cursor (LINE) will also change the selected line in the picture, video signal waveform, vector, and status (data dump) displays.

There are three different methods that you can use to move the cursors:

- V POS and H POS

Turn V POS clockwise to move the Y cursor (LINE) up. Press V POS to move the Y cursor to the center of the picture.
Turn H POS clockwise to move the X cursor (SMPL) to the right. Press H POS to move the X cursor to the center of the picture.

- Control Stick (Single-screen display only)

Push the control stick up to move the Y cursor (LINE) up.
Push the control stick to the right to move the X cursor (SMPL) to the right.
You can move diagonally when you use the control stick. Also, you can move quickly by pushing down on the control stick before moving it in the desired direction.

- F•D

You can move the cursors by turning $F \cdot D$. You can toggle between the LINE and SAMPLE cursors by pressing $\mathrm{F} \cdot \mathrm{D}$.
The F•1 F.D settings in the menus accessed by pressing F•1 f_Stop DISPLAY and
F•2 \%DISPLAY are the same.
Procedure

$$
\begin{aligned}
\hline \text { CINELITE } & \rightarrow \text { F•1 f Stop DISPLAY } \rightarrow \text { F•1 F.D } \\
& \rightarrow F \cdot{ }^{\text {F }} \text { \%DISPLAY } \rightarrow F \cdot 1 \text { F.D }
\end{aligned}
$$

Settings

LINE: You can move the Y cursor (LINE) up by turning F•D clockwise. This is the default setting.
SAMPLE: You can move the X cursor (SMPL) to the right by turning $F \cdot D$ clockwise.

9.3 Selecting the Measurement Area

To select the area of luminance measurement, follow the procedure below. This setting is applied to P1 to P3 and REF.
The $\mathrm{F} \cdot 3$ MEAS SIZE settings in the menus accessed by pressing $\mathrm{F} \cdot 1 \mathrm{f}$ Stop DISPLAY and F•2 \%DISPLAY are the same.

Procedure

$$
\text { CINELITE } \rightarrow \text { F•1 f_Stop DISPLAY } \rightarrow \text { F•3 MEAS SIZE }
$$

$\rightarrow F \cdot 2$ \%DISPLAY \rightarrow F•3 MEAS SIZE

Settings

1X1: \quad The single pixel at the intersection of the cursors is measured. This is the default setting.
3X3: The luminance of the 3×3 area of pixels centered around the pixel at the intersection of the cursors is averaged and measured.
9X9: The luminance of the 9×9 area of pixels centered around the pixel at the intersection of the cursors is averaged and measured.

9.4 Selecting the Points to Display

You can set three points to measure: P1 to P3. To select the measured points that you want to display, follow the procedure below.
The F•4 MEAS DISP settings in the menus accessed by pressing F•1 f_Stop DISPLAY and F•2 \%DISPLAY are the same.

Procedure

```
CINELITE }->\mathrm{ F•1 f_Stop DISPLAY }->\mathrm{ F•4 MEAS DISP
    F\cdot2 %DISPLAY }->\mathrm{ F.4 MEAS DISP
```


Settings

P1P2P3: The measured points P1 to P3 are displayed. This is the default setting.
P1P2--: \quad The measured points P 1 and P2 are displayed.
P1--P3: The measured points P1 and P3 are displayed.
--P2P3: The measured points P2 and P3 are displayed.
P1----: \quad The measured point P 1 is displayed.
--P2--: \quad The measured point P 2 is displayed.
----P3: \quad The measured point P 3 is displayed.

9.5 Displaying Luminance Levels as f Stop Numbers

In the f Stop display, the f Stop values relative to the reference position are displayed.
Typically, 18% gray is used in the reference position.
Measurement points that have a luminance level of 0% or less are displayed as "****" and cannot be measured.

Figure 9-2 f Stop display

To display luminance levels as f Stop numbers using 18% gray as the reference position, follow the procedure below. Include an 18% gray chart with the objects that you are filming.

Figure 9-3 f Stop display

1. Press CINELITE

2. Press F•6 GAMMA to select a gamma correction table.

The default gamma correction value is 0.45 , but you can also use a user-defined gamma correction table that matches the gamma characteristics of the camera that you are using. For details, see section 9.7, "Configuring User-Defined Correction Tables"
3. Press F•1 f_Stop DISPLAY.
4. Place the cursors over the 18% gray area.

You can set the cursor to any measurement point from P1 to P3.
Reference: Section 9.2, "Moving the Cursors"
5. Press F•5 REF_SET.

The luminance level 18 \% gray becomes the reference value and is displayed as a percentage in the bottom right of the display next to "REF(f 0)." The f Stop value for this luminance level becomes 0.0.
6. Use the cursors to set the measurement point.

The f Stop value relative to 18 \% gray appears next to the cursors.
Also, the P2-P1 and P3-P1 values are displayed in the bottom right of the display.

9.6 Displaying Luminance Levels as Percentages or RGB Values

In the percentage and RGB display, you can display luminance levels as level percentages, RGB percentages, or using 255 RGB levels.

- LEVEL\% display

Luminance levels are indicated as percentages. This is the default setting.

Figure 9-4 LEVEL\% display

- RGB\% display

Each R, G, and B luminance level is indicated using a percentage. The levels are also indicated using bars on the left side of the display (the order is R, G, and then B).

Figure 9-5 RGB\% display

- RGB 255 display

The RGB levels are displayed using 256 steps from 0 to 255 . The levels are also indicated using bars on the left side of the display (the order is R, G, and then B).
The value of an RGB level that is 100% or greater is 255 . The value of an RGB level that is 0% or less is 0.

Figure 9-6 RGB 255 display

To display luminance levels as percentages or RGB levels, follow the procedure below.

Figure 9-7 Percentage and RGB display

1. Press CINELITE.
2. Press F•2 \%DISPLAY.
3. Press F•5 \%/RGB, and select the display format.

You can select LEVEL\%, RGB\%, or RGB 255.
4. Use the cursors to set the measurement point.

The measured values appear near the cursors in the format that you selected in step 3. The cursors are not displayed if they are within the blanking interval.
Reference: Section 9.2, "Moving the Cursors"

9.7 Displaying Synchronized Markers

When the link format is set to single, to synchronize the markers on the vector display and video signal waveform display to measurement points P1 to P3 and REF that you specify on the CINELITE display, follow the procedure below.

Markers cannot be displayed on the video signal waveform display under the following conditions.

- When SWEEP in the video signal waveform menu is V
- When COLOR MATRIX in the video signal waveform menu is COMPOSIT

Marker display will not work properly when waveforms are being displayed using an external sync signal.

If $\mathrm{P}+\mathrm{V}$ or $\mathrm{P}+\mathrm{V}+\mathrm{W}$ is selected, the measured values of the selected measurement point are displayed in the lower left of the vector display. For details on the measured values, see section 12.2.5, "Displaying the Vector Marker."

Procedure

CINELITE \rightarrow F•3 CINELITE ADVANCE

Settings
OFF:
P1 to P3 and REF are displayed only on the CINELITE display. This is the default setting.
$\mathrm{P}+\mathrm{V}$: $\quad \mathrm{P} 1$ to P 3 and REF are displayed on the CINELITE and vector displays.
$\mathrm{P}+\mathrm{W}: \quad \mathrm{P} 1$ to P 3 and REF are displayed on the picture and video signal waveform displays.
$\mathrm{P}+\mathrm{V}+\mathrm{W}$: $\quad \mathrm{P} 1$ to P 3 and REF are displayed on the picture, vector, and video signal waveform displays.

Figure 9-8 Displaying synchronized markers

9.8 Configuring User-Defined Correction Tables

The default gamma correction value when measuring f Stop levels is 0.45 , but you can also use a user-defined gamma correction table that matches the gamma characteristics of the camera that you are using.
There are two types of user-defined correction tables. The first type includes USER-1 to USER-3 and consists of tables that are created using the LV 5330. The second type includes USER-A to USER-E and consists of tables that have been created externally using a device such as a PC. Neither type of user-defined correction table is deleted if you initialize the LV 5330 by following the procedure in section 5.7.1, "Initializing the Settings Using SETUP INIT."

9.8.1 Creating User-Defined Correction Tables Using the LV 5330

You can create and store up to three user-defined correction tables on the LV 5330.
To create a user-defined correction table, prepare a grayscale chart for which the camera f Stop values vary by one for each step, and follow the procedure below.

Figure 9-9 Creating user-defined correction tables

1. Press CINELITE.

2. Press $\mathrm{F} \cdot 6$ GAMMA, and select USER-1.

In this example, the table for USER-1 is created, but the tables for USER-2 and USER-3 can also be created in the same way.
3. Press $\mathrm{F} \cdot 7 \mathrm{CAL}$.

When you press $\mathrm{F} \cdot 7 \mathrm{CAL}$, a user-defined correction table appears in the bottom left of the screen, and the luminance (the data dump Y value) appears near the intersection of the X and Y cursors.
This setting is available when $\mathrm{F} \cdot 6$ GAMMA is set to an option other than 0.45 .

Figure 9-10 User-defined correction table creation display

4. Press F•2 TABLE CLEAR.

All of the values in the user-defined correction table that is currently being edited are initialized. Be sure to initialize the values first when you create a new user-defined correction table.
5. Press $F \cdot 1$ DELETE YES.
6. Move the X and Y cursors to the darkest part of the grayscale chart.

As you repeat this step and the ones that follow, move the X and Y cursors up step-by-step.
7. Press F•5 CAL F, and turn F•D to select 22.0.

As you repeat this step, change the value that you select from 22.0 to 16.0 to 11.0 to 8.0 to 5.6 to 4.0 to 2.8 to 2.0 , in that order.
8. Press F•4 CAL SET.

The location in the user-defined correction table specified using F.5 CAL F is set to the luminance at the intersection of the X and Y cursors. To delete a line of data, press F•3 DATA CLEAR.
9. Repeat steps 5 through 7 to input Lev values into the user-defined correction table.

Make sure that the Lev value increases for each new step. Do not leave any Lev settings in the table blank.

The REF value in the user-defined correction table is entered when you press F•5 REF_SET in the f Stop display.

For example, if you use the table shown below and press F.5 REF_SET when the luminance at the intersection of the X and Y cursors (the data dump Y value) is 416 , the f Stop value at that point (3.0) is displayed as the REF value.

Figure 9-11 User-defined correction table
The f Stop value that corresponds to the luminance at the intersection of the X and Y cursors when $\mathrm{F} \cdot 5$ REF_SET is pressed is 0 . The other f Stop values are indicated below. The values between specified values are interpolated linearly.

When Lv $=152 \mathrm{f}$ Stop $=0.0-3.0=-3.0$
When Lv $=240 \mathrm{f}$ Stop $=1.0-3.0=-2.0$
When Lv $=328 \mathrm{f}$ Stop $=2.0-3.0=-1.0$
When Lv $=416 \mathrm{f}$ Stop $=3.0-3.0=0.0$
When Lv $=504 \mathrm{f}$ Stop $=4.0-3.0=1.0$
When Lv $=592 \mathrm{f}$ Stop $=5.0-3.0=2.0$
When Lv $=680 \mathrm{f}$ Stop $=6.0-3.0=3.0$
When Lv $=768 \mathrm{f}$ Stop $=7.0-3.0=4.0$

9.8.2 Loading a User-Defined Correction Table into the LV 5330

You can load up to five user-defined correction tables into the LV 5330.
To load a user-defined correction table into the LV 5330, follow the procedure below.

Figure 9-12 Loading user-defined correction tables

1. Create a user-defined correction table.

Example (TEST.CLT):

\#		 Comment
		 Keyword
TYPE:0		 Keyword
\#Input	-7\%	0 Comment
\#	109\%	4095 Comment
\#Output	0\%	0 Comment
	1000\%	65535 Comment
\#Input	Output	 Comment
\#\#\#\#\#\#\#	\#\#\#\#\#\#	\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\# Comment
0	0	 Data
1	16	 Data
2	32	 Data
(Omitted)			
4093	65488	 Data
4094	65504	 Data
4095	65520	 Data
\# EOF		 Comment

When you create a correction table, make sure that it conforms to the specifications listed below.

Overall File Specifications

File Type
Extension
End-of-Line Character
Number of Lines
Number of Characters per Line
File Name Length
Permitted File Name Characters

ASCII text file
.CLT
CR+LF
5000 or less
255 or less (including CR+LF)
20 characters or less (excluding the extension)
Letters of the alphabet (A to Z; uppercase and lowercase), numerals (0 to 9), and underscores ($_$).

Comment Specifications

If you start a line with the number sign (\#), the line is treated as a comment and does not affect operations.
You can put comments anywhere.

Keyword Specifications

Be sure to put the keyword lines before the data lines and to enter a keyword without anything preceding it at the beginning of each keyword line.
NAME: The LV 5330 displays the eight characters that follow the separator (colon) as the name of the correction table. After the separator, enter the correction table name using letters of the alphabet (A to Z; uppercase and lowercase), numbers (0 to 9), and underscores ($_$). You can enter up to 10 characters.
TYPE: This is a code for identifying the file type. Enter a zero after the separator (colon).

Data Specifications

From the start of a line, enter the input value, a separator, and then the output value, in that order.
Input Value Enter values from 0 to 4095 (12 bits), increasing the value by one for each line.
A luminance level of 100% is defined as 940 (10 bits) $\times 4=3760$ (12 bits). A luminance level of 0% is defined as 64 (10 bits) $\times 4=256$ (12 bits).
Separator Enter a single tab code.
Output Value Enter a value from -131072 to 131071 (18 bits, $\pm 2000 \%$).
2. Save the user-defined correction table to USB memory, and connect the USB memory to the LV 5330.

Save the user-defined correction table in the USB memory's root directory.
3. Press CINELITE.
4. Press $\mathrm{F} \cdot 6$ GAMMA, and select USER-A.

In this example, a user-defined correction table is assigned to USER-A, but user-defined correction tables can be assigned to USER-B through USER-E in the same way.
5. Press $\mathrm{F} \cdot 7 \mathrm{CAL}$.

The file list display appears.
This setting is available when $F \cdot 6$ GAMMA is set to an option other than 0.45 .

Figure 9-13 File list display
6. Turn the function dial to select the file in the USB memory that you want to copy from.
7. Press $\mathrm{F} \cdot 2 \mathrm{COPY}$.

The user-defined correction table from the USB memory that you selected is copied to USER-A. If a file had already been copied to the selected table number (USER-A in this example), the previous file is overwritten. F•2 COPY appears when there are files in USB memory.

To clear the table that has been copied to USER-A, press F•3 TABLE CLEAR.
To turn regamma OFF, set F•4 REGAMMA to OFF, and then press F•2 COPY. The default setting is ON.

When you press F•6 GAMMA in the CINELITE menu, the user-defined correction tables that have been loaded from USB memory appear.
A loaded correction table is displayed using the name determined by its NAME keyword.
When regamma is OFF, an asterisk is displayed in front of the name of the correction table.

Figure 9-14 CINELITE menu

10. CINEZONE Display

The CINEZONE display has a CINEZONE display mode, in which the picture luminance levels are displayed using colors, and a level search display mode, in which the specified luminance level is displayed using green.
Both of these display modes can be accessed by pressing CINEZONE. Neither of them can be incorporated into the multi-screen display.

10.1 Switching between the CINEZONE and Level Search Displays

To switch between the CINEZONE and level search displays, follow the procedure below.

Procedure

$$
\text { CINEZONE } \rightarrow \text { F•1 MODE }
$$

Settings

ZONE: The CINEZONE display appears. This is the default setting.
SEARCH: The level search display appears.

10.2 CINEZONE Display

In the CINEZONE display, the picture luminance levels are converted into RGB colors.
Also, luminance levels above F•5 UPPER\% are displayed using white, and levels below F•6
LOWER\% are displayed using black. You can see what colors correspond to what luminance levels by looking at the scale on the right of the display.

Picture display

- CINEZONE

CINEZONE display

Figure 10-1 CINEZONE display

10.2.1 Selecting the Color Gradation

To select the color gradation, follow the procedure below.
F•2 ZONE DISPLAY appears when F•1 MODE is set to ZONE.

Procedure

```
CINEZONE }->\mathrm{ F-2 ZONE DISPLAY
```


Settings

LINEAR: Luminance values from 0 to 100% are displayed using 1024 different colors. This is the default setting.
STEP: Values below 0 \%, from 0 to 100% (in 10% steps), and above 100% are displayed using 12 different colors.

ZONE DISPLAY = LINEAR

ZONE DISPLAY = STEP

Figure 10-2 Color gradations

10.2.2 Superimposing the CINELITE Display

To superimpose the CINELITE display over the CINEZONE display, follow the procedure below.
You can superimpose the CINELITE percentage and RGB displays. You cannot superimpose the CINELITE f Stop display.
F•3 \%DISPLAY appears when F•1 MODE is set to ZONE.
Procedure
CINEZONE \rightarrow F•3 \%DISPLAY

Settings

OFF: Only the CINEZONE display appears. This is the default setting.
ON: The CINELITE display is superimposed over the CINEZONE display.
\%DISPLAY = OFF

Figure 10-3 CINELITE display

10.2.3 Configuring the CINELITE Display

To configure the settings for the CINELITE display that is superimposed over the CINEZONE display, press F•4 DISPLAY on the CINEZONE menu. For instructions, see chapter 9, "CINELITE Display."
F•4 DISPLAY appears when F•3 \%DISPLAY is set to ON.
CINEZONE \rightarrow F•4 DISPLAY \rightarrow

F.D	MEAS	MEAS	MEAS	\%/RGB	
LINE	P0S P1	SIZE 1X1	DISP P1P2P3	LEVEL\%	
menu					

Figure 10-4 DISPLAY menu

10.2.4 Setting the Color

Luminance levels in the CINEZONE display are typically displayed using their corresponding colors, but luminance levels above F.5 UPPER\% are displayed using white, and levels below F•6 LOWER\% are displayed using black.

If F•5 UPPER\% is 1% greater than F•6 LOWER\% and you lower the value of F•5
UPPER\%, the value of F•6 LOWER\% is automatically lowered to maintain a difference of 1% between the two values. In the same way, if you raise the value of F•6 LOWER\%, the value of F•5 UPPER\% is automatically raised to maintain a difference of 1% between the two values.

To set the color range, follow the procedure below.
Procedure

```
CINEZONE }->\mathrm{ F.5 UPPER%
```

 \(\rightarrow\) F•6 LOWER\%

Settings

Range for UPPER\%: -6.3 to 109.4 (The default setting is 100.0.)
Range for LOWER\%: $\quad-7.3$ to 108.4 (The default setting is 0.0 .)

10.3 Level Search Display

In the level search display, the specified luminance level range is displayed with gradations. Also, luminance levels greater than or equal to the specified range are displayed using white, and levels less than equal to the specified range are displayed using black.

Figure 10-5 Level search display

10.3.1 Setting the Search Level

To set the level that is displayed with gradation, follow the procedure below.
The range specified by $\mathrm{F} \cdot 3$ RANGE\% in reference to $\mathrm{F} \cdot 2$ LEVEL \% is displayed with gradation.
F•2 LEVEL\% appears when $\mathrm{F} \cdot 1 \mathrm{MODE}$ is set to SEARCH.

Procedure

CINEZONE \rightarrow F•2 LEVEL\%
\rightarrow F•3 RANGE\%

Settings

Range for LEVEL\%: $\quad-7.3$ to 109.4 (The default setting is 50.0.)
Range for RANGE\%: 0.5 to 100.0 (The default setting is 12.0.)

11. Video Signal Waveform Display

11.1 Video Signal Waveform Display Explanation

To view the video signal waveform display, press WFM.

Figure 11-1 Video signal waveform display

Table 11-1 Video signal waveform display explanation

No.	Item	Explanation
1	Filter	Appears when you have set a low pass filter. Reference: Section 11.4.3, "Selecting a Filter"
2	Gain	The video signal waveform gain is displayed here. You can set the gain to a value between 0.2 and 10 by setting GAIN MAG and GAIN VARIABLE. Reference: Section 11.4.1, "Selecting the Fixed Gain," section 11.4.2 "Setting the Variable Gain"
3	Scale for 75 \% color bars	A scale that matches the peak levels of the chroma of a 75 \% color bar test signal can be displayed here. Reference: Section 11.9.2, "Displaying a Scale for 75 \% Color Bars"
4	Cursor	You can measure the time or amplitude using cursors. Reference: Section 11.7, "Cursor Settings"
5	Selected line	You can display the waveform of the selected line. Reference: Section 11.6, "Line Selection Settings"

11.2 Display Position Settings

You can adjust the display position of a video signal waveform using V POS and H POS.

11.2.1 Setting the Vertical Position

Turn V POS to set the video signal waveform's vertical position.
Pressing V POS will return the vertical display position to its default location.
11.2.2 Setting the Horizontal Position

Turn HPOS to set the video signal waveform's horizontal position.
Pressing H POS will return the horizontal display position to its default location.

11.3 Intensity Settings

To configure the intensity settings, press F-1 INTEN in the video signal waveform menu. You can set the video signal waveform and scale intensities.

$$
\text { WFM } \rightarrow \text { F•1 INTEN } \rightarrow
$$

WFM INTEN 0	SCALE INTEN 4			
up				
menu				

FF.1 FF.2 FF.3 F.4 F.F F.6 F

Figure 11-2 INTEN menu

11.3.1 Setting the Video Signal Waveform Intensity

To set the video signal waveform intensity, follow the procedure below. Regardless of this setting, in the multi-screen display, waveforms are displayed using the intensity that MULTI WFM is set to. The WFM INTEN value set using MULTI WFM and the VECTOR INTEN value set using MULTI VEC are the same.
If you press F•D, the intensity will be reset to its default value of 0 .
Reference: MULTI WFM \rightarrow Section 16.2, "Setting Each Measurement Mode"
Procedure
WFM \rightarrow F•1 INTEN \rightarrow F•1 WFM INTEN

Settings

Selectable range: -128 to 127 (The default value is 0 .)

11.3.2 Setting the Scale Intensity

To set the scale intensity, follow the procedure below. Regardless of this setting, in the multi-screen display, scales are displayed using the intensity that MULTI WFM is set to. The SCALE INTEN value set using MULTI WFM and the SCALE INTEN value set using MULTI VEC are the same.
If you press $F \cdot D$, the scale intensity will be reset to its default value of 4 .
Reference: MULTI WFM \rightarrow Section 16.2, "Setting Each Measurement Mode"
Procedure
$\mathrm{WFM} \rightarrow \mathrm{F} \cdot 1$ INTEN $\rightarrow \mathrm{F} \cdot 2$ SCALE INTEN

Settings

Selectable range: -8 to 7 (The default setting is 4.)

11.4 Gain and Filter Settings

To configure gain and filter settings, press F•2 GAIN FILTER in the video signal waveform menu. You can configure the video signal waveform gain and filter.

WFM \rightarrow F•2 GAIN FILTER \rightarrow

Figure 11-3 GAIN FILTER menu

11.4.1 Selecting the Fixed Gain

To set the fixed video signal waveform gain, follow the procedure below.
Procedure

$$
\text { WFM } \rightarrow \text { F•2 GAIN FILTER } \rightarrow \text { F•2 GAIN MAG }
$$

Settings

X1: \quad No gain. This is the default setting.
X5: \quad Waveforms are magnified to five times their normal size.

11.4.2 Setting the Variable Gain

To set the variable video signal waveform gain, follow the procedure below.
You can set the video signal waveform gain to a value between 0.2 and 10 by setting $\mathbb{F} \cdot 2$ GAIN MAG and F•1 GAIN VAR.

Procedure

$$
\text { WFM } \rightarrow \text { F•2 GAIN FILTER } \rightarrow \text { F•1 GAIN VAR }
$$

Settings

CAL: \quad The video signal waveform gain is fixed. This is the default setting.
VAR: \quad You can adjust the video signal waveform gain using $F \cdot D$ as described below. The gain value appears in the upper right of the screen. If you press F•D, the gain is set to its default value of 1.000 or 5.000 .
0.200 to 2.000 (when GAIN MAG is $\times 1$)
1.000 to 10.000 (when GAIN MAG is $\times 5$)

GAIN MAG $=\times 1$
GAIN VAR = VAR

GAIN MAG $=\times 5$
GAIN VAR = CAL

Figure 11-4 Video signal waveform gain

11.4.3 Selecting a Filter

To select a filter, follow the procedure below.
The filters that you can select vary depending on how COLOR MATRIX is set.
Reference: COLOR MATRIX \rightarrow Section 11.8.1, "Selecting the Display Format"
Procedure

$$
\overline{\mathrm{WFM}} \rightarrow \mathrm{~F} \cdot 2 \text { GAIN FILTER } \rightarrow \text { F•3 FILTER }
$$

- When COLOR MATRIX is set to YCbCr ; GBR; or RGB

Settings

FLAT: This filter has a flat frequency response over the entire bandwidth of the input signal. This is the default setting.
LOW PASS: This filter is a low-pass filter with the following frequency responses:
Attenuation of 20 dB or more at 20 MHz when the input signal is HD-SDI Attenuation of 20 dB or more at 3.8 MHz when the input signal is SD-SDI

Figure 11-5 Component signal filter displays

- When COLOR MATRIX is set to COMPOSIT

Settings

FLAT: Only the pseudo-composite signal is displayed. This is the default setting.
FLAT+LUM: The pseudo-composite signal and the luminance signal are displayed side by side.
LUMA: Only the luminance signal is displayed.

FILTER = FLAT+LUM

Figure 11-6 Pseudo-composite signal filter display

11.5 Sweep Settings

To configure the video signal waveform sweep settings, press F•3 SWEEP in the video signal waveform menu.

WFM \rightarrow F.3 SWEEP \rightarrow

Figure 11-7 SWEEP menu

11.5. \quad Selecting the Sweep Method

To select a video signal waveform sweep method, follow the procedure below.
This setting is available when MODE is set to OVERLAY or PARADE. When MODE is set to TIMING, the sweep mode setting is fixed at H .
Reference: MODE \rightarrow Section 11.12, "Switching the Display Mode"
Procedure

$$
\text { WFM } \rightarrow \text { F•3 SWEEP } \rightarrow \text { F•1 SWEEP }
$$

Settings

$\mathrm{H}: \quad$ Lines are displayed. This is the default setting.
V: \quad Fields are displayed when the input format is interlaced or segmented frame.
Frames are displayed when the input format is progressive or when F•2
V _SWEEP is set to 2 V .

Figure 11-8 Sweep methods

11.5.2 Selecting the Line Display Sweep Time

To select the line display sweep time, follow the procedure below.
This setting is available when $\mathrm{F} \cdot 1$ SWEEP is set to H and COLOR MATRIX is set to COMPOSIT or when F•1 SWEEP is set to H and MODE is set to OVERLAY. When MODE is set to PARADE, the sweep mode setting is fixed at 1 H .

Reference: COLOR MATRIX \rightarrow Section 11.8.1, "Selecting the Display Format"
 MODE \rightarrow Section 11.12, "Switching the Display Mode"

Procedure

WFM \rightarrow F•3 SWEEP \rightarrow F•2 H_SWEEP

Settings

1H: The sweep time is set to that of one line. This is the default setting.
2H: The sweep time is set to that of two lines.

Figure 11-9 Line display sweep times

11.5.3 Selecting the Field or Frame Display Sweep Time

To select the field or frame display sweep time, follow the procedure below. This setting is available when $F \cdot 1$ SWEEP is set to V and the input format is set to interlaced or segmented frame (as long as MODE is set to PARADE and COLOR MATRIX is set to COMPOSIT).
When the input format is progressive, the sweep time is fixed at one frame. The sweep time is fixed at 1V unless MODE is set to PARADE and COLOR MATRIX is set to COMPOSIT.
Reference: COLOR MATRIX \rightarrow Section 11.8.1, "Selecting the Display Format" MODE \rightarrow Section 11.12, "Switching the Display Mode"

Procedure

$$
\text { WFM } \rightarrow \text { F•3 SWEEP } \rightarrow \text { F•2 V_SWEEP }
$$

Settings

1V: The sweep time is set to that of one field. This is the default setting.
$2 \mathrm{~V}: \quad$ The sweep time is set to that of one frame.

Figure 11-10 Field/frame display sweep times

11.5.4 Selecting Which Field to Display

When displaying fields, follow the procedure below to select which field to display. This setting is available when F•1 SWEEP is set to V and the input format is set to interlaced or segmented frame. However, this setting is invalid when F•2 V_SWEEP is set to 2 V .

Procedure

$$
\text { WFM } \rightarrow \text { F•3 SWEEP } \rightarrow \text { F•3 FIELD }
$$

Settings

FIELD1: Field 1 is displayed. This is the default setting.
FIELD2: Field 2 is displayed.

11.5.5 Selecting the Horizontal Magnification

To select the horizontal magnification, follow the procedure below. The magnifications that you can select vary depending on the F•1 SWEEP, COLOR MATRIX, MODE, and F•2 H_SWEEP settings as indicated in the table below. When F•2 H_SWEEP is set to 2 H and COLOR MATRIX is set to COMPOSIT, the magnification is fixed at $\times 1$.
Reference: COLOR MATRIX \rightarrow Section 11.8.1, "Selecting the Display Format"
MODE \rightarrow Section 11.12, "Switching the Display Mode"
Table 11-2 Horizontal magnifications

SWEEP	COLOR MATRIX	MODE	H_SWEEP	$\times 1$	$\times 10$	$\times 20$	$\times 40$	ACTIVE	BLANK
H	YCbCr GBR RGB	PARADE	-	Yes	Yes	Yes	No	Yes	Yes
		OVERLAY	1H	Yes	Yes	Yes	No	Yes	Yes
			2 H	Yes	Yes	Yes	No	No	Yes
		TIMING	-	Yes	Yes	Yes	No	Yes	No
	COMPOSIT	-	1H	Yes	No	No	No	Yes	No
V	-	-	-	Yes	No	Yes	Yes	No	No

Procedure

$\overline{W F M} \rightarrow F \cdot 3$ SWEEP $\rightarrow F \cdot 4$ SWEEP MAG

Settings

X1: \quad The video signal waveforms are displayed so that they fit in the screen. This is the default setting.

X10: The video signal waveforms are magnified from the center of the display to 10 times the size of $\times 1$.
X20: \quad The video signal waveforms are magnified from the center of the display to 20 times the size of $\times 1$.

X40: The video signal waveforms are magnified from the center of the display to 40 times the size of $\times 1$.
ACTIVE: Everything but the video signal waveform blanking interval is magnified.
BLANK: The video signal waveform blanking interval is magnified.

SWEEP MAG = ACTIVE

SWEEP MAG = ×10

SWEEP MAG = BLANK

Figure 11-11 Horizontal magnifications

11.6 Line Selection Settings

To configure the line select settings, press F•4 LINE SELECT in the video signal waveform menu. You can display the waveform of the selected line.
This setting is available when SWEEP is set to H .
Reference: SWEEP \rightarrow Section 11.5.1, "Selecting the Sweep Method"
WFM \rightarrow F•4 LINE SELECT \rightarrow

Figure 11-12 LINE SELECT menu
11.6.1 Displaying the Waveform of the Selected Line

To display the waveform of the selected line, follow the procedure below.
Changing this setting will also change the picture display and vector display line selection settings.

Procedure
$\overline{\mathrm{WFM}} \rightarrow \mathrm{F} \cdot 4$ LINE SELECT $\rightarrow \mathrm{F} \cdot 1$ LINE SELECT

Settings

ON: The waveform of the selected line is displayed.
OFF: The waveforms of all lines are displayed on top of each other. This is the default setting.

Figure 11-13 Turning line selection on and off

11.6.2 Selecting a Line

To select a line to display the waveform of, follow the procedure below. The selected line is indicated in the lower left of the display.
Changing this setting will also change the selected line in the picture, CINELITE, vector, and status (data dump) displays.

Procedure

WFM \rightarrow F•4 LINE SELECT \rightarrow F•D

11.6.3 Setting the Line Selection Range

To set the line selection range, follow the procedure below.
F•2 FIELD appears when the input format is set to interlaced or segmented frame.
Changing this setting will also change the picture display and vector display line selection ranges.

Procedure
$\overline{\mathrm{WFM}} \rightarrow \mathrm{F} \cdot 4$ LINE SELECT \rightarrow F•2 FIELD
Settings (the examples are the selectable ranges when the input format is 1080i/59.94)
FIELD1: A line from field one can be selected. (Example: 1 to 563.)
FIELD2: A line from field 2 can be selected. (Example: 564 to 1125.)
FRAME: All lines can be selected. This is the default setting. (Example: 1 to 1125.)

11.7 Cursor Settings

To configure cursor settings, press F•5 CURSOR in the video signal waveform menu. You can display cursors and use them to make measurements.

WFM \rightarrow F. 5 CURSOR \rightarrow

Figure 11-14 CURSOR menu

11.7.1 Displaying Cursors

To display cursors, follow the procedure below.
The REF cursor is displayed in blue, and the DELTA cursor is displayed in green. The measured value of DELTA-REF is displayed in the bottom right of the screen.

Procedure
WFM \rightarrow F• 5 CURSOR \rightarrow F•1 CURSOR

Settings

ON: Cursors are displayed.
OFF: \quad Cursors are not displayed. This is the default setting.

11.7.2 Selecting the Cursor Type

To select the cursor type, follow the procedure below.
This setting is available when COLOR MATRIX is set to an option other than COMPOSIT. When COLOR MATRIX is set to COMPOSIT, the cursor type setting is fixed at Y .

Procedure

$$
\overline{\mathrm{WFM}} \rightarrow \mathrm{~F} \cdot 5 \text { CURSOR } \rightarrow \mathrm{F} \cdot 2 \mathrm{XY} \text { SEL }
$$

Settings

$\mathrm{X}: \quad \mathrm{X}$ cursors are displayed for measuring time.
$Y: \quad Y$ cursors are displayed for measuring amplitude.

CURSOR $=Y$

Figure 11-15 Cursor types

11.7.3 Moving the Cursors

Follow the procedure below to select a cursor and then move it by turning $F \cdot D$. Triangles appear on both ends of the selected cursor.
You can also select a cursor by pressing $F \cdot D$. Each time you press $F \cdot D$, the selected cursor switches from REF, to DELTA, to TRACK, and so on.

Procedure
$\overline{\mathrm{WFM}} \rightarrow$ F• 5 CURSOR \rightarrow F•4 FD VAR

Settings

REF: The REF cursor (blue) is selected. This is the default setting.
DELTA: The DELTA cursor (green) is selected.
TRACK: The REF cursor and DELTA cursor are both selected.

11.7.4 Setting the Units of Measurement

To select the units used in cursor measurement, follow the procedure below.

- When CURSOR is set to Y

Procedure

$$
\text { WFM } \rightarrow \text { F•5 CURSOR } \rightarrow \text { F•3 Y UNIT }
$$

Settings

mV : \quad Measurements are made in units of voltage. This setting cannot be chosen when COLOR MATRIX is set to COMPOSIT. This is the default setting.
\%: Measurements are made as percentages. When COLOR MATRIX is set to YCbCr, GBR, or RGB $700 \mathrm{mV}=100 \%$ When COLOR MATRIX is set to COMPOSIT and the composite format is set to NTSC $714 \mathrm{mV}=100$ \%
When COLOR MATRIX is set to COMPOSIT and the composite format is set to PAL $\quad 700 \mathrm{mV}=100 \%$
$\mathrm{R} \%$: \quad The amplitude will be measured as a percentage of the amplitude at the time when you pressed F•5 REF SET. This setting cannot be chosen when COLOR MATRIX is set to COMPOSIT.
3FF: \quad Measurements are made in hexadecimal with 0 to 100% expressed as 040 to 3AC.

This setting cannot be chosen when COLOR MATRIX is set to COMPOSIT.
1023: Measurements are made in decimal with 0 to 100% expressed as 64 to 940. This setting cannot be chosen when COLOR MATRIX is set to COMPOSIT.

- When CURSOR is set to X

Procedure

$$
\text { WFM } \rightarrow \text { F.5 CURSOR } \rightarrow \text { F•3 X UNIT }
$$

Settings

sec: \quad Measurements are made in units of seconds. This is the default setting.
$\mathrm{Hz}: \quad$ Measurements are made in units of frequency, with the length of one period set to the distance between the two cursors.

11.7.5 Setting the Base Value

When F•3 Y UNIT is set to R\%, follow the procedure below to set the amplitude at the location of your choice to 100%.

Procedure
$\overline{\text { WFM }} \rightarrow$ F. 5 CURSOR \rightarrow F. 5 REF SET

11.8 Color System Settings

To configure the color system settings, press $F \cdot 6$ COLOR SYSTEM in the video signal waveform menu. You can set the video signal waveform display format and setup level.

WFM \rightarrow F. 6 COLOR SYSTEM \rightarrow

Figure 11-16 COLOR SYSTEM menu

11.8.1 Selecting the Display Format

To select a video signal waveform display format, follow the procedure below. The selected display format is indicated in the upper left of the display.
If you select COMPOSIT, choose the composite display format (NTSC or PAL) by setting COMPOSIT FORMAT in the system settings.
Reference: COMPOSIT FORMAT \rightarrow Section 5.1.4, "Setting the Composite Display Format"
Procedure

$$
\text { WFM } \rightarrow \text { F•6 COLOR SYSTEM } \rightarrow \text { F•1 COLOR MATRIX }
$$

Settings

YCbCr: Luminance and chrominance signals are displayed. This setting cannot be chosen when the LV 5330 is in dual link mode. This is the default setting.
GBR: $\quad A Y C_{B} C_{R}$ signal is converted into a GBR signal and displayed.
$R G B: \quad A Y C_{B} C_{R}$ signal is converted into an $R G B$ signal and displayed.
COMPOSIT: $A Y C_{B} C_{R}$ signal is converted into a pseudo-composite signal and displayed.

COLOR MATRIX = YCbCr

COLOR MATRIX = GBR

COLOR MATRIX = RGB

COLOR MATRIX = COMPOSIT

Figure 11-17 Component and pseudo-composite displays

11.8.2 Displaying the GBR or RGB Signal Simultaneously with the Luminance Signal

To display the GBR or RGB signal simultaneously with the luminance signal, follow the procedure below.
The selected display format is indicated in the upper right of the display.
This setting is available when F•1 COLOR MATRIX is set to GBR or RGB.
Procedure
WFM \rightarrow F•6 COLOR SYSTEM \rightarrow F•2 YGBR
\rightarrow F•2 YRGB

Settings

ON: The GBR or RGB signal is displayed simultaneously with the luminance signal.
OFF: The GBR or RGB signal is displayed by itself. This is the default setting.

Figure 11-18 YGBR and YRGB displays

11.8.3 Selecting the Waveform Colors

To display waveforms in colors that correspond to G, B, and R , follow the procedure below. This setting is available when F•1 COLOR MATRIX is set to GBR or RGB.

Procedure

$\overline{W F M} \rightarrow$ F•6 COLOR SYSTEM	$\rightarrow F \cdot 3$ GBR COLOR
	$\rightarrow F \cdot 3$ RGB COLOR

Settings

ON: Waveforms are displayed in colors that correspond to G, B, and R. Waveforms are displayed in white in the parade and V sweep displays.
OFF: \quad Waveforms are displayed in white. This is the default setting.

11.8.4 Setting the Setup Level

To set the setup level of the pseudo-composite display, follow the procedure below. This setting is available when F-1 COLOR MATRIX is set to COMPOSIT and the composite display format is set to NTSC.
Reference: Composite display format \rightarrow Section 5.1.4, "Setting the Composite Display Format"
Procedure

$$
\text { WFM } \rightarrow \text { F•6 COLOR SYSTEM } \rightarrow \text { F• } 4 \text { SETUP }
$$

Settings

$0 \%: \quad$ No setup level is added. This is the default setting.
7.5% : A setup level of 7.5% is added.

Figure 11-19 Pseudo-composite display setup levels

11.9 Scale Settings

To configure the scale settings, press F•1 SCALE in the video signal waveform menu. You can set the scale unit, type, and color.

WFM \rightarrow F•7 7 next menu \rightarrow F••1 SCALE \rightarrow

Figure 11-20 SCALE menu

11.9.1 Selecting the Scale Unit

To select the scale unit, follow the procedure below.
This setting is available when COLOR MATRIX is set to an option other than COMPOSIT. When COLOR MATRIX is set to COMPOSIT, the scale unit setting is fixed at percentage if the composite display format is NTSC, and it is fixed at V if the composite display format is PAL.
Reference: COLOR MATRIX \rightarrow Section 11.8.1, "Selecting the Display Format"
Composite display format \rightarrow Section 5.1.4, "Setting the Composite Display Format"
Procedure
WFM \rightarrow F•7 next menu \rightarrow F••1 SCALE \rightarrow F•1 SCALE UNIT

Settings

HDV,SD\%: The scale unit is set to V when the input signal is HD-SDI and to \% when the input signal is SD-SDI. This is the default setting.
HDV,SDV: The scale unit is set to V.
HD\%,SD\%: The scale unit is set to \%.
3FF: $\quad 0$ to 100% is displayed as 040 to 3AC (YGBR) or 040 to 3C0 (CbCr).
1023: $\quad 0$ to 100% is displayed as 64 to 940 (YGBR) or 64 to 960 (CbCr).

SCALE UNIT = HD\%,SD\%

SCALE UNIT $=3$ FF

Figure 11-21 Scale units

11.9.2 Displaying a Scale for 75 \% Color Bars

To display a scale that matches the peak levels of the chroma of a 75% color bar test signal, follow the procedure below.
This setting is available when COLOR MATRIX is set to YCbCr.
Reference: COLOR MATRIX \rightarrow Section 11.8.1, "Selecting the Display Format"
Procedure
$\overline{\text { WFM }} \rightarrow \mathbb{F} \cdot 7$ next menu \rightarrow F•1 SCALE \rightarrow F•2 75% COLOR SCALE

Settings

ON: A scale for 75% color bars is displayed.
OFF: A scale for 75% color bars is not displayed. This is the default setting.
75% COLOR SCALE $=$ ON

Figure 11-22 Scale for 75% color bars

11.9.3 Changing the Scale Color

To select the scale color from one of seven options, follow the procedure below.

Procedure

WFM \rightarrow F•7 next menu \rightarrow F•1 SCALE \rightarrow F•3 SCALE COLOR

Settings

WHITE: The scale is displayed in white.
YELLOW: The scale is displayed in yellow. This is the default setting.
CYAN: The scale is displayed in cyan.
GREEN: The scale is displayed in green.
MAGENTA: The scale is displayed in magenta.
RED: \quad The scale is displayed in red.
BLUE: \quad The scale is displayed in blue.

11.10 Displaying the Blanking Interval

To display the blanking interval, follow the procedure below.
Procedure

$$
\overline{\mathrm{WFM}} \rightarrow \mathrm{~F} \cdot 7 \text { next menu } \rightarrow \mathrm{F} \cdot 2 \text { EAV-SAV }
$$

Settings
REMOVE: The blanking interval is blacked out. This is the default setting.
PASS: The blanking interval is displayed.

Figure 11-23 Blanking interval displays

11.11 Setting the Display Mode to TIMING

You can set the display mode using F•4 MODE, but TIMING cannot be selected with the default settings. To enable the selection of TIMING, set F•4 MODE to TIMING after first setting $\mathbb{F} \cdot 3$ TIMING MODE to NORMAL by following the procedure below.

Procedure
WFM \rightarrow F•7 next menu \rightarrow F•3 TIMING MODE

Settings

NORMAL: TIMING is added to the options for F•4 MODE.
PASS: \quad TIMING is not included in the options for $F \cdot 4$ MODE. This is the default setting.

11.12 Switching the Display Mode

To switch the display mode, follow the procedure below.

Procedure

$$
\overline{\mathrm{WFM}} \rightarrow \mathrm{~F} \cdot 7 \text { next menu } \rightarrow \mathrm{F} \cdot 4 \text { MODE }
$$

Settings

OVERLAY: Component signals are displayed on top of each other (overlaid).
PARADE: Component signals are displayed side by side (parade display). This is the default setting.
TIMING: The time and amplitude differences between a given channel and channel 1 are displayed (timing display).

MODE = PARADE

Figure 11-24 Display Modes

In the timing display, a bowtie signal (permission to use patented technology granted by Tektronix, Inc.) is used as the signal source. Y and C_{B} are displayed on the left half and Y and C_{R} are displayed on the right half.

You can examine the space between the narrow area of the waveform, referred to as the null, and the long reference markers in the center for timing problems. If you use an LT 443D signal as the signal source, the marker spacing indicates a time difference of 1 ns . If the null of the C_{B} or C_{R} waveform is further to the left of the screen than the marker, C_{B} or C_{R} is ahead, if the null is further to the right of the screen than the marker, C_{B} or C_{R} is behind.

You can examine the width of the pinched areas of the waveform to determine amplitude differences. If the amplitudes are different between channels, the pinched areas will be thicker.

11.13 Turning $\mathrm{YC}_{\mathrm{B}} \mathrm{C}_{\mathrm{R}}$; GBR; and RGB Channels On and Off

To turn signal channels on and off, press F•5 DISPLAY in the video signal waveform menu.
F-5 DISPLAY does not appear if:

- MODE is set to TIMING.
- COLOR MATRIX is set to COMPOSIT.
- YGBR or YRGB is set to ON.

Reference: MODE \rightarrow Section 11.12, "Switching the Display Mode"
COLOR MATRIX \rightarrow Section 11.8.1, "Selecting the Display Format"
YGBR, YRGB \rightarrow Section 11.8.2, "Displaying the GBR or RGB Signal Simultaneously with the Luminance Signal"

WFM \rightarrow F•7 next menu \rightarrow F•5 DISPLAY \rightarrow

Figure 11-25 DISPLAY menu

To turn individual channels in a $\mathrm{YC}_{\mathrm{B}} \mathrm{C}_{\mathrm{R}}$; GBR; or RGB signal on and off, follow the procedure below.
You cannot set every channel to OFF.
Procedure
WFM $\rightarrow F \cdot 7$ next menu $\rightarrow F \cdot 5$ DISPLAY $\rightarrow \begin{aligned} & \mathrm{F} \cdot 1 \\ & \mathrm{FH} 1 \\ & \mathrm{~F} \cdot 2 \mathrm{CH} 2 \\ & \mathrm{~F} \cdot 3 \\ & \mathrm{CH} 3\end{aligned}$

Settings

ON: The specified channel in the $\mathrm{YC}_{B} \mathrm{C}_{\mathrm{R}}, G B R$, or $R G B$ signal is displayed. This is the default setting.
OFF: \quad The specified channel in the $Y_{B} C_{R}, G B R$, or $R G B$ signal is not displayed.
The waveforms that are assigned to each channel are indicated in the table below.
Table 11-3 Waveform assignments

COLOR MATRIX	CH 1	CH 2	CH 3
YCbCr	Y	Cb	Cr
GBR	G	B	R
RGB	R	G	B

12. Vector Display

12.1 Vector Display Explanation

To display vectors, press VECTOR.

Figure 12-1 Vector display

Table 12-1 Vector display explanation

No.	Item	Explanation
1	Gain	The vector gain is displayed here. You can set the gain to a value between 0.2 and 10 by setting GAIN MAG and GAIN VARIABLE. Reference: Section 12.3.1, "Selecting the Fixed Gain," section 12.3.2 "Setting the Variable Gain"
2	I and Q axes	The I and Q axes can be displayed. Reference: Section 12.2.3, "Displaying the I and Q Axes"
3	Selected line	You can display the waveform of the selected line. Reference: Section 12.4, "Line Selection Settings"

12.2 Vector and Scale Settings

To configure vector and scale settings, press F•1 INTEN/SCALE in the vector menu. You can configure the I and Q axes display, the vector intensity, the scale intensity and colors, and the vector marker.

$$
\text { VECTOR } \rightarrow \text { F•1 INTEN/SCALE } \rightarrow
$$

VECTOR INTEN 0	SCALE INTEN 4	IQ AXIS OFF	SCALE COLOR YELLOW	MARKER 0FF	
$\mathrm{F} \cdot 1$	$\mathrm{~F} \cdot 2$				
$\mathrm{~F} \cdot 3$					
$\mathrm{~F} \cdot 4$	$\mathrm{~F} \cdot 5$	$\mathrm{~F} \cdot 6$			
$\mathrm{~F} \cdot 7$					

Figure 12-2 INTEN/SCALE menu

12.2.1 Setting the Vector Intensity

To set the vector intensity, follow the procedure below. Regardless of this setting, in the multi-screen display, scales are displayed using the intensity that MULTI VEC is set to. The VECTOR INTEN value set using MULTI VEC and the WFM INTEN value set using MULTI WFM are the same.
If you press $F \cdot D$, the intensity will be reset to its default value of 0 . F•1 VECTOR INTEN appears when DISPLAY is set to VECTOR.

Reference: MULTI VEC \rightarrow Section 16.2, "Setting Each Measurement Mode"
DISPLAY \rightarrow Section 12.6, "Switching between the Vector, 5 Bar, and Phase Difference Displays"

Procedure
VECTOR \rightarrow F•1 INTEN/SCALE $\rightarrow F \cdot 1$ VECTOR INTEN

Settings

Selectable range: -128 to 127 (The default value is 0 .)

12.2.2 Setting the Scale Intensity

To set the scale intensity, follow the procedure below. Regardless of this setting, in the multi-screen display, scales are displayed using the intensity that MULTI VEC is set to. The SCALE INTEN value set using MULTI VEC and the SCALE INTEN value set using MULTI WFM are the same.
If you press $F \cdot D$, the scale intensity will be reset to its default value of 4 .
Reference: MULTI VEC \rightarrow Section 16.2, "Setting Each Measurement Mode"
Procedure
VECTOR $\rightarrow \mathrm{F} \cdot 1$ INTEN/SCALE $\rightarrow \mathrm{F} \cdot 2$ SCALE INTEN

Settings

Selectable range: -8 to 7 (The default setting is 4 .)

12.2.3 Displaying the I and Q Axes

To display the I and Q axes, follow the procedure below.
F•3 IQ AXIS appears when DISPLAY is set to VECTOR.

Reference: DISPLAY \rightarrow Section 12.6, "Switching between the Vector, 5 Bar, and Phase Difference
 Displays"

Procedure
VECTOR \rightarrow F•1 INTEN/SCALE $\rightarrow F \cdot 3$ IQ AXIS

Settings

ON: \quad The I and Q axes are displayed, unless the input format is $625 i / 50$.
OFF: \quad The I and Q axes are not displayed. This is the default setting.

IQ AXIS = ON

Figure 12-3 The I and Q axes display

12.2.4 Changing the Scale Color

To select the scale color from one of seven options, follow the procedure below.

Procedure

VECTOR \rightarrow F•1 INTEN/SCALE \rightarrow F•4 SCALE COLOR

Settings

WHITE: The scale is displayed in white.
YELLOW: The scale is displayed in yellow. This is the default setting.
CYAN: The scale is displayed in cyan.
GREEN: The scale is displayed in green.
MAGENTA: The scale is displayed in magenta.
RED: The scale is displayed in red.
BLUE: The scale is displayed in blue.

12.2.5 Displaying the Vector Marker

When the link format is set to single, to display a marker on the vector display, follow the procedure below.

You can move the marker horizontally using H POS and vertically using V POS. The measured values are displayed in the lower right of the display. Press H POS to move the marker to the $\mathrm{Cb}=0.0 \%$ position. Press VPOS to move the marker to the $\mathrm{Cr}=0.0 \%$ position.

Measured values are displayed using the following references: Cb at position $\mathrm{B}=100.0 \%$ and Cr at position $\mathrm{R}=100.0 \%$. The distance from the center is expressed as "d," and hue is expressed as "deg." Normally, marker is displayed in green. When if falls outside the display, it blinks in red.
F.5 MARKER appears when DISPLAY is set to VECTOR.

Reference: DISPLAY \rightarrow Section 12.6, "Switching between the Vector, 5 Bar, and Phase Difference Displays"

Procedure
VECTOR \rightarrow F•1 INTEN/SCALE \rightarrow F• 5 MARKER
Settings
ON: The vector marker is displayed.
OFF: The vector marker is not displayed. This is the default setting.

Figure 12-4 Displaying the vector marker

12.3 Gain Settings

To set the vector gain, press F•2 GAIN in the vector menu.
F•2 GAIN appears when DISPLAY is set to VECTOR.
Reference: DISPLAY \rightarrow Section 12.6, "Switching between the Vector, 5 Bar, and Phase Difference
Displays"
VECTOR \rightarrow F• 2 GAIN \rightarrow

Figure 12-5 GAIN menu

12.3.1 Selecting the Fixed Gain

To select the fixed vector gain, follow the procedure below.
Procedure

$$
\text { VECTOR } \rightarrow \text { F•2 GAIN } \rightarrow F \cdot 2 \text { GAIN MAG }
$$

Settings

X1: \quad No gain. This is the default setting.
X5: \quad Vectors are magnified to five times their normal size.
IQ-MAG: Vectors are magnified to 3.14 times their normal size. (The gain is set so that the IQ signal fits within the perimeter of the scale when NTSC SMPTE color bars are up-converted to HDTV.)

12.3.2 Setting the Variable Gain

To set the variable vector gain, follow the procedure below.
You can set the vector gain to a value between 0.2 and 10 by setting F•1 GAIN MAG and F•1 GAIN VAR.

Procedure

$$
\text { VECTOR } \rightarrow F \cdot 2 \text { GAIN } \rightarrow F \cdot 1 \text { GAIN VAR }
$$

Settings

CAL: \quad The vector gain is fixed. This is the default setting.
VAR: \quad You can adjust the vector gain using $F \cdot D$ as described below. The gain value appears in the upper right of the screen. If you press F•D, the gain is set to its default value of $1.000,5.000$, or 3.140 .
0.200 to 2.000 (when GAIN MAG is set to $\times 1$)
1.000 to 10.000 (when GAIN MAG is set to $\times 5$)
0.628 to 6.280 (when GAIN MAG is set to IQ-MAG)

GAIN MAG = IQ-MAG
GAIN VAR = CAL

Figure 12-6 Vector gains

12.4 Line Selection Settings

To configure the line select settings, press F•3 LINE SELECT in the vector menu. You can display the vectors of the selected line.
F•3 LINE SELECT appears when DISPLAY is set to VECTOR or 5BAR.
Reference: DISPLAY \rightarrow Section 12.6, "Switching between the Vector, 5 Bar, and Phase Difference Displays"

VECTOR \rightarrow F•3 LINE SELECT \rightarrow

Figure 12-7 LINE SELECT menu

12.4.1 Displaying the Vectors of the Selected Line

To display the vectors of the selected line, follow the procedure below.
Changing this setting will also change the picture display and video signal waveform display line selection settings.

Procedure
VECTOR \rightarrow F•3 LINE SELECT \rightarrow F•1 LINE SELECT

Settings

ON: \quad The vectors of the selected line are displayed.
OFF: \quad The vectors of all lines are displayed on top of each other. This is the default setting.

LINE SELECT = ON

LINE SELECT = OFF

Figure 12-8 Turning line selection on and off

12.4.2 Selecting a Line

To select a line, follow the procedure below. The selected line is indicated in the lower left of the display.
Changing this setting will also change the selected line in the picture, CINELITE, video signal waveform, and status (data dump) displays.

Procedure

$$
\text { VECTOR } \rightarrow \text { F•3 LINE SELECT } \rightarrow \text { F•D }
$$

12.4.3 Setting the Line Selection Range

To set the line selection range, follow the procedure below.
F•2 FIELD appears when the input format is set to interlaced or segmented frame.
Changing this setting will also change the picture display and video signal waveform display line selection ranges.

Procedure

$$
\text { VECTOR } \rightarrow \text { F•3 LINE SELECT } \rightarrow \text { F•2 FIELD }
$$

Settings (the examples are the selectable ranges when the input format is 1080i/59.94)
FIELD1: A line from field one can be selected. (Example: 1 to 563.)
FIELD2: A line from field 2 can be selected. (Example: 564 to 1125.)
FRAME: All lines can be selected. This is the default setting. (Example: 1 to 1125.)

12.5 Color System Settings

To configure color system settings, press F•4 COLOR SYSTEM in the vector menu. You can set the vector display format and display a scale for 75% color bars.
F•4 COLOR SYSTEM appears when DISPLAY is set to VECTOR.
Reference: DISPLAY \rightarrow Section 12.6, "Switching between the Vector, 5 Bar, and Phase Difference
Displays"
VECTOR \rightarrow F. 4 COLOR SYSTEM \rightarrow

Figure 12-9 COLOR SYSTEM menu

12.5.1 Selecting the Display Format

To select the vector display format, follow the procedure below.
If you select COMPOSIT, choose the composite display format (NTSC or PAL) by setting COMPOSIT FORMAT in the system settings.
Reference: COMPOSIT FORMAT \rightarrow Section 5.1.4, "Setting the Composite Display Format"
Procedure
VECTOR \rightarrow F•4 COLOR SYSTEM \rightarrow F•• 1 COLOR MATRIX

Settings

COMPONEN: The component chrominance signal is displayed on the X and Y axes.
This is the default setting.
COMPOSIT: The component signal is converted into a composite signal, and the composite signal's chrominance signal is displayed on the X and Y axes.

COLOR MATRIX = COMPONEN

COLOR MATRIX = COMPOSIT

Figure 12-10 Component and pseudo-composite displays

12.5.2 Setting the Setup Level

To set the setup level of the pseudo-composite display, follow the procedure below. This setting is available when $\mathrm{F} \cdot 1$ COLOR MATRIX is set to COMPOSIT and the composite display format is set to NTSC.

Reference: Composite display format \rightarrow Section 5.1.4, "Setting the Composite Display Format"
Procedure
VECTOR \rightarrow F•4 COLOR SYSTEM \rightarrow F•2 SETUP

Settings

0% : \quad No setup level is added. This is the default setting.
7.5\%: A setup level of 7.5% is added.
12.5.3 Displaying a Scale for 75 \% Color Bars

To display a scale for 75 \% color bars, follow the procedure below.

Procedure

$$
\text { VECTOR } \rightarrow \text { F•4 COLOR SYSTEM } \rightarrow \text { F•3 COLOR BAR }
$$

Settings

100\%: A scale that matches the peak levels of a 100% color bar test signal appears. This is the default setting.
75\%: A scale that matches the peak levels of a 75% color bar test signal appears.

COLOR BAR = 100\% (when receiving a 75 \%
color bar test signal)

COLOR BAR $=75 \%$ (when receiving a 75% color bar test signal)

Figure 12-11 Scale types

12.6 Switching between the Vector, 5 Bar, and Phase Difference Displays

To switch between the vector, 5 bar, and phase difference displays, follow the procedure below.
When the LV 5330 is in dual link mode, it can only display vector waveforms. F•6 DISPLAY does not appear.

Procedure
VECTOR \rightarrow F•6 DISPLAY

Settings

VECTOR: The vector display is shown. This is the default setting.
5BAR: The 5 bar display is shown.
EXTPHASE: The phase difference between an SDI signal and an external sync signal is displayed.

12.7 5 Bar Display

12.7.1 5 Bar Display Explanation

In the 5 bar display, the positive and negative peak levels are displayed simultaneously. The levels are typically displayed in cyan, but portions that exceed their limits are displayed in red.
To show the 5 bar display, set F•6 DISPLAY to 5BAR.

Figure 12-12 5 bar display

Table 12-2 5 bar display explanation

No.	Item	Explanation
1	Y	The luminance signal level is displayed here. Levels less than 0\% or greater than 100% are displayed in red. (If you install an LV 5330SER02, which is sold separately, you can set the level that is considered an error.)
2	G, B, and R	The GBR signal levels of the converted YCBCR signal are displayed. The levels that fall outside of the range you set using GAMUT ERROR in the status display are displayed in red. Reference: Section 14.6.6, "Setting Gamut Error Detection Levels"
3	CMP	The pseudo-composite signal level of the converted YCBCR signal is displayed. (The blanking interval is not included.) Levels that fall outside of the range you set using COMPOSIT GAMUT in the status display are displayed in red. Reference: Section 14.6.7, "Setting Composite Gamut Error Detection Levels"

12.7.2 Selecting the 5 Bar Display Unit

The 5 bar display unit is the same as the UNIT setting that you have made on the status menu. To select the 5 bar display unit, follow the procedure below.

Procedure

$$
\text { STATYS } \rightarrow \text { F•5 ERROR CONFIG } \rightarrow \text { F•4 ERROR LEVEL } \rightarrow \text { F•6 UNIT }
$$

Settings

\%: The display unit for YGBR is percentage, and the display unit for CMP is IRE. This is the default setting.
mV : The display unit is mV . Depending on the composite display format, the scale differs as follows:
NTSC: $100 \%=700 \mathrm{mV}$ (YGBR) and $100 \mathrm{IRE}=714 \mathrm{mV}$ (CMP) PAL: 100% (IRE) = 700 mV

Figure 12-13 5 bar display unit (PAL)

12.8 Phase Difference Display

12.8.1 Explanation of the Phase Difference Display

In the phase difference display, you can measure the phase difference between an SDI signal and an external sync signal. To show the phase difference display, set F•6 DISPLAY to EXTPHASE.
To configure phase difference display settings, press F.5 EXTREF PHASE. F.5 EXTREF PHASE appears when F•6 DISPLAY is set to EXTPHASE.
VECTOR \rightarrow F. 5 EXTREF PHASE \rightarrow

Figure 12-14 Phase difference display
To measure phase differences, press REFE to switch to external sync mode and apply an external sync signal to the LV 5330. The supported external sync signal formats are listed below.

- 1080i/60, 1080i/59.94, and 1080i/50
- $1080 \mathrm{p} / 30,1080 \mathrm{p} / 29.97,1080 \mathrm{p} / 25,1080 \mathrm{p} / 24$, and $1080 \mathrm{p} / 23.98$
- 1080PsF/30, 1080PsF/29.97, 1080PsF/25, 1080PsF/24, and 1080PsF/23.98
- 720p/60, $720 \mathrm{p} / 59.94,720 \mathrm{p} / 50,720 \mathrm{p} / 30,720 \mathrm{p} / 29.97,720 \mathrm{p} / 25,720 \mathrm{p} / 24$, and 720p/23.98
- NTSC and NTSC with a 10 -field ID
- PAL

Table 12-3 Explanation of the phase difference display

No.	Item	Explanation
1	\checkmark PHASE	The phase difference in lines is displayed here.
2	H PHASE	The phase difference in microseconds (us) is displayed here.
3	TOTAL PHASE	The total of the V phase and H phase differences is displayed here in microseconds (us).
4	SDI PHASE MEMORY	Recorded phase differences are displayed here. Reference: Section 12.8.3, "Recording the Current Phase Difference"
5	REF	The external sync signal setting is indicated using one of the following messages: INT Indicates that the internal sync signal is being used. Phase difference measurement cannot be performed. EXT HD > DEFAULT Indicates that a tri-level sync signal is being used with the default phase difference setting. EXT HD > USER REF Indicates that a tri-level sync signal is being used with a user-defined phase difference setting. EXT BB > DEFAULT Indicates that a BB signal is being used with the default phase difference setting. EXT BB > USER REF Indicates that a BB signal is being used with a user-defined phase difference setting. NO SIGNAL Indicates that no external sync signal is being applied. Reference: Section 12.8.5, "Setting the Current Phase Difference to Zero" Section 12.8.6, "Initializing the Phase Difference Settings"
6	Graphical display	The vertical axis indicates the V phase difference in lines. The horizontal axis represents the H phase time difference. When the circles that represent V and H overlap with each other in the center, there is no phase difference. The H circle turns green when it is within ± 3 clocks of the center. The V circle turns green when it is in the center. Circles do not appear when the LV 5330 uses internal synchronization. For both the V and H axes, differences of up to approximately $+1 / 2$ frames from the center are displayed in the Delay axis and differences of up to approximately $-1 / 2$ frames from the center are displayed in the Advance axis. See the tables below for details. The H axis phase difference display may fluctuate within the range of ± 1 clock in cases such as when the signal is switched.

Table 12-4 Delay and Advance axis display ranges

Format	Displayed in the Advance Axis							
		,		Displayed in the Delay Axis				
	V PHASE (in lines)	H PHASE (in $\mu \mathrm{s}$)		V PHASE (in lines)	H PHASE (in $\mu \mathrm{s}$)		V PHASE (in lines)	H PHASE (in $\mu \mathrm{s}$)
$\begin{aligned} & \text { 1080i/59.94, } \\ & \text { 1080p/29.97, } \\ & \text { 1080PsF/29.97 } \end{aligned}$	-562	-29.645	to	0	0	to	562	0
$\begin{aligned} & \text { 1080i/60, } \\ & \text { 1080p/30, } \\ & \text { 1080PsF/30 } \end{aligned}$	-562	-29.616	to	0	0	to	562	0
$\begin{aligned} & \text { 1080i/50, } \\ & \text { 1080p/25, } \\ & \text { 1080PsF/25 } \end{aligned}$	-562	-35.542	to	0	0	to	562	0
1080p/23.98, 1080PsF/23.98	-562	-37.060	to	0	0	to	562	0
1080p/24, 1080PsF/24	-562	-37.023	to	0	0	to	562	0
720p/59.94	-375	0	to	0	0	to	374	22.230
720p/60	-375	0	to	0	0	to	374	22.208
720p/50	-375	0	to	0	0	to	374	26.653
720p/29.97	-375	0	to	0	0	to	374	44.475
720p/30	-375	0	to	0	0	to	374	44.430
720p/25	-375	0	to	0	0	to	374	53.319
720p/23.98	-375	0	to	0	0	to	374	55.597
720p/24	-375	0	to	0	0	to	374	55.542
525i/59.94	-262	-63.518	to	0	0	to	262	0
625i/50	-312	-63.962	to	0	0	to	312	0

12.8.2 Setting the Phase Difference Memory Number

You can record up to eight phase differences between the SDI signal and the external sync signal. This is useful in cases such as when you are using a switcher to change signals and you want to align the separate phases.
To select which of the eight different memory numbers to record to or delete, follow the procedure below.

Procedure
VECTOR \rightarrow F•5 EXTREF PHASE \rightarrow F•1 SDI NUMBER

Settings

Selectable range: 1 to 8 (The default setting is 1 .)

12.8.3 Recording the Current Phase Difference

To record the difference between the SDI signal and the external sync signal to the memory number that you have selected using $\mathbb{F} \cdot 1$ SDI NUMBER, follow the procedure below.

Procedure
VECTOR \rightarrow F•5 EXTREF PHASE \rightarrow F•2 SDI MEMORY

12.8.4 Deleting Recorded Phase Differences

To delete the phase difference stored in the memory number that you have selected using F-1 SDI NUMBER, follow the procedure below.

Procedure
VECTOR \rightarrow F•5 EXTREF PHASE \rightarrow F•3 MEMORY CLEAR
12.8.5 Setting the Current Phase Difference to Zero

To set the current SDI signal and external sync signal phase difference to zero, follow the procedure below. You can change the reference phase difference to match the system that you are using.

Procedure
VECTOR \rightarrow F•5 EXTREF PHASE \rightarrow F•5 USER REF SET
12.8.6 Initializing the Phase Difference Settings

To set the current SDI signal and external sync signal phase difference to the default setting, follow the procedure below.
The default setting is the phase difference between the SDI output signal of the LEADER LT 443D Multiformat Video Generator without a timing offset and a BB signal when both signals are connected through cables of equal length. Because of device inconsistencies and phase fluctuations when the SDI signal is switched, a display error within the range of ± 3 clocks may occur.

Procedure
VECTOR \rightarrow F•5 EXTREF PHASE \rightarrow F•6 REF DEFAULT

13. Audio Display

13.1 Audio Display Explanation

The audio display shows the levels of eight specified channels using numbers and meters. The meters are typically green, but meters whose values are above the reference level are displayed in red.

The audio display does not have its own key. To show the audio display, press MULT, and then press $\mathrm{F} \cdot 1$ MODE to select AUDIO.
You can configure audio settings from the audio menu. To display the audio menu, press MULTI, and then press F•2 MULTI AUDIO.

Figure 13-1 Audio display

13.2 Selecting the Display Mode

When the multi-screen display MODE is set to AUDIO, audio levels are displayed using numbers and meters, but when MODE is set to 4SCREEN (when LOWER is set to AUDIO) or WFM_AUDIO, only one or the other (numbers or meters) can be displayed.
When MODE is set to 4SCREEN or WFM_AUDIO, follow the procedure below to select the audio display mode.

Reference: MODE \rightarrow Section 16.1, "Selecting the Multi-Screen Display Format"

Procedure

MULTI \rightarrow F•2 MULTI AUDIO \rightarrow F•1 MODE

Settings

LEVEL: Audio levels are displayed using meters. This is the default setting.
VALUE: Audio levels are displayed using numbers.

Figure 13-2 Audio display modes

13.3 Selecting Which Channels to Measure

In the audio display, you can measure and display the audio levels of eight channels. To select which channels to measure, press F•2 SDI GROUP in the audio menu.

MULTI \rightarrow F•2 MULTI AUDIO \rightarrow F•2 SDI GROUP \rightarrow

Figure 13-3 SDI GROUP menu

To select the eight channels to show in the audio display, follow the procedure below. The channels assigned to 1st GROUP and 2nd GROUP are listed below.

Figure 13-4 Channel assignments
You can select two headphone output channels from among the eight channels that you select here.

Procedure

$\overline{M U L T I} \rightarrow F \cdot 2$ MULTI AUDIO \rightarrow F•2 2 SDI GROUP $\rightarrow F \cdot 1$ 1st GROUP
\rightarrow F•2 2nd GROUP

Settings

1:
2:
3: Channels 5 through 8 are displayed. This is the default setting for 2nd GROUP. Channels 9 through 12 are displayed.

4: Channels 13 through 16 are displayed.

13.4 Channel Mapping Settings

In the audio display, you can assign the following names to different channels: $\mathrm{L}, \mathrm{R}, \mathrm{SL}(\mathrm{S})$, SR, C, LFE, RL, and RR. To assign channel names, press F•3 CHANNEL MAPPING in the audio menu.

MULTI \rightarrow F•2 MULTI AUDIO \rightarrow F•3 CHANNEL MAPPING \rightarrow

Figure 13-5 CHANNEL MAPPING menu
To assign channel names to different channels, follow the procedure below.
You can see channel names in the audio display. You cannot assign multiple names to a single channel.

Procedure
MULTI \rightarrow F•2 MULTI AUDIO \rightarrow F•3 CHANNEL MAPPING $\rightarrow F \cdot 1$ L
$\rightarrow F \cdot 2 R$
\rightarrow F.3 SL(S)
\rightarrow F.4 SR
\rightarrow F.7 next menu \rightarrow F•1 C
\rightarrow F.7 next menu \rightarrow F•2 LFE
\rightarrow F•7 next menu \rightarrow F•3 RL
\rightarrow F•7 next menu \rightarrow F•4 RR

Settings

Selectable range: The channels assigned to 1st GROUP and the channels assigned to 2nd GROUP.
(The initial channel assignment settings are $\mathrm{L}: \mathrm{CH} 1, \mathrm{R}: \mathrm{CH} 2, \mathrm{SL}(\mathrm{S}): \mathrm{CH} 3$, SR:CH4, C:CH5, LFE:CH6, RL:CH7, and RR:CH8.)

13.5 Meter Settings

To configure meter settings, press F•4 LEVEL METER in the audio menu. You can set the meter reference level, range, and scale.

MULTI \rightarrow F-2 MULTI AUDIO \rightarrow F•4 LEVEL METER \rightarrow

Figure 13-6 LEVEL METER menu

13.5.1 Setting the Reference Level

To set the meter reference level, follow the procedure below.
Levels that exceed the reference level are displayed in red, and levels that are within the reference level are displayed in green.

Procedure

MULTI \rightarrow F•2 MULTI AUDIO \rightarrow F•4 LEVEL METER \rightarrow F•1 REF LEVEL

Settings

-20dB: The reference level is set to -20 dB . This is the default setting.
-18 dB : The reference level is set to -18 dB .
-12 dB : The reference level is set to -12 dB .
-9 dB : The reference level is set to -9 dB .

13.5.2 Setting the Range

To set the meter range, follow the procedure below.
Procedure

$$
\text { MULTI } \rightarrow F \cdot 2 \text { MULTI AUDIO } \rightarrow F \cdot 4 \text { LEVEL METER } \rightarrow F \cdot 2 \text { RANGE }
$$

Settings

PEAK60dB: The meter range is -60 to 0 dB , and the meters have peak markers. This is the default setting.
PEAK90dB: The meter range is -90 to 0 dB , and the meters have peak markers.
AVERAGE: The reference level is set to 0 dB , and the range is set to -20 to 3 dB . The meters do not have peak markers.

The table below shows the responsiveness for different meter RANGE settings.
Figure 13-1 Meter responsiveness

RANGE	delay time 1	return time 2
PEAK60dB	Instantaneous	1.7 sec
PEAK90dB	Instantaneous	1.7 sec
AVERAGE	0.3 sec	0.3 sec

1 The amount of time it takes for the meter to show -20 dB when a $-20 \mathrm{~dB} / 1 \mathrm{kHz}$ sine-wave signal is applied with no input preceding it.
2 The amount of time it takes for the meter to show -40 dB when the application of a $-20 \mathrm{~dB} / 1 \mathrm{kHz}$ sine-wave signal stops.

13.5.3 Selecting the Scale

To select the type of meter scale to use, follow the procedure below.
F•3 SCALE appears when F•2 RANGE is set to PEAK60dB or PEAK90dB.

Procedure

$$
\text { MULTI } \rightarrow \text { F•2 MULTI AUDIO } \rightarrow \text { F•4 LEVEL METER } \rightarrow \text { F•3 SCALE }
$$

Settings

TYPE-A: A scale that covers the range determined by the RANGE setting is displayed. This is the default setting.
TYPE-B: A scale where the value determined by REF LEVEL is set to 0 dB is displayed.
13.5.4 Setting the Peak Value Hold Time

To set the meter's peak value hold time (in 0.5 -second steps), follow the procedure below. This setting is valid when F•2 RANGE is set to PEAK60dB or PEAK90dB.

Procedure

$$
\text { MULTI } \rightarrow \text { F•2 MULTI AUDIO } \rightarrow \text { F•4 LEVEL METER } \rightarrow \text { F•4 PEAK HOLD }
$$

Settings

Selectable range: 0.5 to 5.0 or HOLD. The default setting is 0.5 .

13.5.5 Meter Settings Overview

The meter readings for a -10 dB audio signal are shown below.
Figure 13-2 Meter Settings

F.1 REF LEVEL		-20dB		-18dB		-12dB		F.4 PEAK
F.3 SCALE		TYPE-A	TYPE-B	TYPE-A	TYPE-B	TYPE-A	TYPE-B	HOLD
F-2 RANGE	PEAK60dB	$\left.\begin{array}{\|r\|} \hline 0 \\ -5 \\ -10 \\ -15 \\ -20 \\ -20 \\ -30 \\ -30 \\ -40 \\ -50 \\ -60 \end{array}\right]$		$\left.\begin{array}{r} 0 \\ -5 \\ -10 \\ -10 \\ -15 \\ -20 \\ -20 \\ -30- \\ -40- \\ -50 \\ -60 \end{array}\right]$	$\begin{array}{\|c\|} \hline 18 \\ 15 \\ 10 \\ 5 \\ 5 \\ 0 \\ 0 \\ -10 \\ -20 \\ -20 \\ -30 \\ -42 \end{array}$	$\left.\begin{array}{r} 0 \\ -5 \\ -10 \\ -15 \\ -15 \\ -20 \\ -30 \\ -30 \\ -40- \\ -50 \\ -60 \end{array}\right]$	$\left.\begin{array}{\|r\|} \hline 12 \\ 5 \\ 5 \\ 0 \\ -10 \\ -20 \\ -20 \\ -30 \\ -40 \\ -48 \end{array}\right]$	$\begin{aligned} & \hline 0.5 \text { to } 5.0 \\ & \text { / HOLD } \end{aligned}$
	PEAK90dB	$\left[\begin{array}{r} 0 \\ -5 \\ -10 \\ -10 \\ -15 \\ -20 \\ -30 \\ -30 \\ -40 \\ -50 \\ -60 \\ -60 \\ -70 \\ -90 \end{array}\right]$	$\left.\begin{array}{r}20 \\ 15 \\ 10- \\ 5 \\ 5 \\ 0 \\ -10 \\ -10 \\ -20 \\ -30 \\ -40- \\ -50 \\ -60\end{array}\right]$	0 -5 -10 -15 $-20-$ -30 -30 $-40-$ -50 $-60-$ -700 $-90-$	18 18 10 5 5 0 0 -10 -10 -20 $-30-$ -40 -40 -50 -60 -72	$\left.\begin{array}{r}0 \\ -5 \\ -10 \\ -15- \\ -20 \\ -30 \\ -30 \\ -40- \\ -50 \\ -60- \\ -700 \\ -90\end{array}\right]$	$\left.\begin{array}{r}12 \\ 5 \\ 0 \\ 0 \\ -10 \\ -20 \\ -20 \\ -30 \\ -40- \\ -50 \\ -60 \\ -78\end{array}\right]$	$\begin{aligned} & 0.5 \text { to } 5.0 \\ & \text { / HOLD } \end{aligned}$
	AVERAGE	-2 -3 -5 -7 -10 -15 -20		-				Not valid

13.6 Headphone Settings

To configure the headphone settings, press F•5 PHONES in the audio menu. You can turn headphone output on and off, adjust the headphone volume, and set the headphone output channels.

```
MULTI \(\rightarrow\) F•2 MULTI AUDIO \(\rightarrow\) F•5 PHONES \(\rightarrow\)
```


Figure 13-7 PHONES menu

13.6.1 Turning Headphone Output On and Off

To turn the headphone jack signal transmission on and off, follow the procedure below.
Procedure

$$
\text { MULTI } \rightarrow \mathrm{F} \cdot 2 \text { MULTI AUDIO } \rightarrow \mathrm{F} \cdot 5 \text { PHONES } \rightarrow \mathrm{F} \cdot 1 \text { PHONES OUT }
$$

Settings

ON: An audio signal is transmitted through the headphone jack. This is the default setting.
OFF: An audio signal is not transmitted through the headphone jack.

13.6.2 Adjusting the Headphone Volume

To adjust the headphone volume, follow the procedure below.
If you press $F \cdot D$, the headphone volume will be reset to its default value of 64 .
If SHORTCUT KEY SET in the system settings has been set to VOLUME, you can adjust the headphone volume simply by pressing SHORT CUT.

Reference: SHORTCUT KEY SET \rightarrow Section 5.6, "Assigning a Function to the SHORT CUT Key"
Procedure
MULTI \rightarrow F•2 MULTI AUDIO \rightarrow F•5 PHONES \rightarrow F•2 VOLUME

Settings

Selectable range: 0 to 128 (The default setting is 64.)

13.6.3 Selecting the Headphone Jack Output Channels

To select the left and right headphone jack output channels separately, follow the procedure below. You can select the two headphone channels from the channels that are assigned to 1 st GROUP and 2nd GROUP.

Reference: 1st GROUP and 2nd GROUP \rightarrow Section 13.3, "Selecting Which Channels to Measure"

Procedure

$$
\text { MULTI } \rightarrow \text { F•2 MULTI AUDIO } \rightarrow \text { F•5 PHONES } \rightarrow \text { F•3 L CH SELECT }
$$

$$
\rightarrow \overline{\mathrm{F} \bullet 4} \mathrm{R} \mathrm{CH} \text { SELECT }
$$

Settings

Selectable range: The channels assigned to 1st GROUP and the channels assigned to 2nd GROUP.
The default setting is CH 1 for L and CH 2 for R .

14. Status Display

14.1 Status Display Explanation

To show the status display, press STATUS.

Figure 14-1 Status display
Figure 14-1 Status display explanation

Item	Display	Explanation				
SIGNAL	Indicates whether or not an SDI signal is being applied to one of the SDI input connectors. "NO SIGNAL" may appear even when an SDI signal is applied to one of the connectors if the signal amplitude is small or if there is a lot of jitter. If "NO SIGNAL" appears, the rest of the information that follows will be blank.					
	DETECT	An SDI signal is being applied.	$	$	NO SIGNAL	An SDI signal is not being applied.
:---	:---	:---				
FORMAT	Indicates the video signal format detection status. The meanings of the indications vary as described below depending on whether the input format in the system settings has been set to AUTO or MANUAL. If "UNKNOWN" appears, the rest of the information that follows will be blank. Reference: Section 5.1, "Setting the Input Format"					
When the input format is set to AUTO, this indication means that a signal that the LV 5330 supports is being applied. When the input format is set to MANUAL, this indication means that a signal is being applied whose format is the same as that of the manually specified format.						
UNKNOWN	When the input format is set to AUTO, this indication means that a signal that the LV 5330 does not support is being applied. When the input format is set to MANUAL, this indication means that a signal is being applied whose format is other than that of the manually specified format.					

Item	Display	Explanation
TRS		Indicates the TRS error detection results. A TRS error occurs when the EAV and SAV of the SDI input signal are not in the right places.
	NORMAL	No errors have been detected.
	ERROR	An error has been detected.
	Blank	TRS ERROR has been set to OFF. Reference: Section 14.6.3, "Configuring Error Detection Settings"
LINE NUMBER		Indicates the line number error detection results. A line number error occurs when the line number embedded in the SDI input signal is different than the line number counted internally by the LV 5330. This indication is not displayed when the input signal is SD-SDI.
	NORMAL	No errors have been detected.
	ERROR	An error has been detected.
	Blank	LINE ERROR has been set to OFF. Reference: Section 14.6.3, "Configuring Error Detection Settings"
CRC LUMA CRC CHROMA		Indicates CRC error detection results separately for the chrominance and luminance signals. An error occurs if the CRC embedded in the SDI input signal and the CRC computed by the LV 5330 do not match. This indication is not displayed when the input signal is SD-SDI.
	NORMAL	No errors have been detected.
	ERROR	An error has been detected.
	Blank	CRC ERROR has been set to OFF. Reference: Section 14.6.3, "Configuring Error Detection Settings"
EDH		Indicates the EDH error detection results. An error occurs if there is an error flag in an EDH packet embedded in the SDI input signal and or if the CRC computed from the SDI input signal is different than an EDH packet's CRC data. This indication is not displayed when the input signal is HD-SDI. Reference: Section 14.5.2, "EDH Packet Display Explanation"
	NORMAL	No errors have been detected.
	ERROR	An error has been detected.
	NOT FOUND	No EDH packets have been found.
	Blank	EDH ERROR has been set to OFF. Reference: Section 14.6.3, "Configuring Error Detection Settings"
GAMUT		Indicates the gamut error detection results. An error occurs when the gamut level exceeds the level set by GAMUT, accessed through ERROR CONFIG. Reference: Section 14.6.6, "Setting Gamut Error Detection Levels"
	NORMAL	No errors have been detected.
	ERROR	An error has been detected.
	Blank	GAMUT ERROR has been set to OFF. Reference: Section 14.6.3, "Configuring Error Detection Settings"

Item	Display	Explanation
COMP.GAMUT		Indicates the composite gamut error detection results. An error occurs when the gamut level of the pseudo-composite signal exceeds the level set by COMPOSIT GAMUT, accessed through ERROR CONFIG. Reference: Section 14.6.7, "Setting Composite Gamut Error Detection Levels"
	NORMAL	No errors have been detected.
	ERROR	An error has been detected.
	Blank	C.GAMUT ERROR has been set to OFF. Reference: Section 14.6.3, "Configuring Error Detection Settings"
PARITY		Indicates the parity error detection results. UDW errors are not detected.
	NORMAL	No errors have been detected.
	ERROR	An error has been detected.
	Blank	PARITY ERROR has been set to OFF. Reference: Section 14.6.3, "Configuring Error Detection Settings"
CHECKSUM		Indicates the checksum error detection results.
	NORMAL	No errors have been detected.
	ERROR	An error has been detected.
	Blank	CHECKSUM ERROR has been set to OFF. Reference: Section 14.6.3, "Configuring Error Detection Settings"
BCH		Indicates the BCH error detection results. An error is counted if the SDI input signal's embedded audio BCH code causes an error. This indication is not displayed when the input signal is SD-SDI.
	NORMAL	No errors have been detected.
	ERROR	An error has been detected.
	Blank	BCH ERROR has been set to OFF. Reference: Section 14.6.3, "Configuring Error Detection Settings"
CRC		Indicates the CRC error detection results. An error is counted if the channel status bit of the SDI input signal's embedded audio has a CRC error.
	NORMAL	No errors have been detected.
	ERROR	An error has been detected.
	WARNING	The channel status FORMAT is Consumer. Reference: Section 14.4.1, "Audio Status Display Explanation"
	Blank	AUDIO CRC has been set to OFF. Reference: Section 14.6.3, "Configuring Error Detection Settings"
CHANNEL		The detected channels in the SDI input signal's embedded audio are displayed here. If audio control packets are embedded in the SDI input signal, the channels are detected from the audio control packet ACT bit. Otherwise, the channels are detected from the audio data packet.
	Number	Audio channels are embedded.
	-	Audio channels are not embedded.

Item	Display
ERROR COUNT	The number of detected errors is displayed within the range of 0 to 100,000. You can select whether to count once for every second with a detected error or once for every field with a detected error. Reference: Section 14.6.2, "Selecting the Error Count Rate"
FROM RESET	Indicates the amount of time that has passed since the last error reset.
LOG MODE	Indicates the current condition of the event logging operation. Reference: Section 14.2.3, "Starting Event Logging"
LOG STOPPED	Event logging is stopped.
NOW LOGGING	Event logging is in progress.

14.2 Event Log Settings

The LV 5330 can log various events and save event logs in text format to a USB memory device. Events include signal reception, error occurrence, and recovery from an error. To configure event log settings, press F•1 LOG in the status menu.
The event log contains both channel A and channel B events regardless of input channel setting.

STATUS \rightarrow F•1 LOG \rightarrow

Figure 14-2 LOG menu

14.2.1 Event Log Explanation

To display the event log, press F•1 LOG.

Figure 14-3 Event log
Table 14-2 Event log explanation

No.	Item	Explanation
1	SAMPLE No.	The total number of events (a number from 0 to 1000) is displayed.
2	Logging status	"NOW LOGGING" appears here when events are being logged. "LOGGING STOPPED" appears when logging is stopped. You can start and stop event logging by pressing F•2 LOG. Reference: Section 14.2.3, "Starting Event Logging"
3	Event numbers	Events are assigned numbers in order of their occurrence. The most recent event appears at the top of the list. To view earlier events, turn F•D to the right. You can display a maximum of 1000 events. To set whether or not events after the 1000th event are written over earlier events, press F•4 LOG MODE. Reference: Section 14.2.2, "Scrolling through the Event Log" Section 14.2.5, "Setting the Event Log Overwrite Mode"
4	Event dates and times	The dates and times when events occurred are listed here. You can set the date and time in the system settings by following the procedures in section 5.5, "Setting the Date and Time."
5	Event channels	The channels that events occurred on (A or B) are listed here.
6	Sync signals	The sync signal statuses (INT or EXT) when events occurred are listed here.

No.	Item	Explanation
7	Input formats	The input formats when events occurred are listed here.
8	Event type	The types of events that occurred are listed here. When the same kind of event occurs successively or when multiple events occur at the same time, they are treated as a single event in the event log. You can view all of the events by saving the event log to USB memory. This is especially useful when multiple events occur at the same time and you cannot view all of them on the LV 5330 screen. The displayed event types are listed below. If the detection of a particular error has been disabled, its corresponding event will not be recorded. LINE HD-SDI signal line number error CRC_L HD-SDI Y signal transmission error CRC_C HD-SDI $C_{B} C_{R}$ signal transmission error EDH SD-SDI signal transmission error GMUT Gamut error CGMUT Composite gamut error PRTY Ancillary data parity error CHK Ancillary data checksum error BCH Embedded audio transmission error CRC_WAR Channel status FORMAT is Consumer CRC_ERR Embedded audio CRC error Reference: Section 14.2.6, "Saving the Event Log to USB Memory" Section 14.6.3, "Configuring Error Detection Settings"

14.2.2 Scrolling through the Event Log

To scroll through the event log and view parts of the list that are outside of the display, follow the procedure below. The event log entries are listed in order with the most recent events listed first. To view earlier events, turn $\mathrm{F} \cdot \mathrm{D}$ to the right. To view later events, turn it to the left.

Procedure

$$
\text { STATUS } \rightarrow F \cdot 1 \text { LOG } \rightarrow F \cdot D
$$

14.2.3 Starting Event Logging

To start event logging, follow the procedure below.
Procedure

$$
\text { STATUS } \rightarrow \text { F•1 LOG } \rightarrow \text { F•2 LOG }
$$

Settings

START: Event logging is started. "NOW LOGGING" appears in the event log and the status display.
STOP: Event logging is stopped. "LOGGING STOPPED" appears in the event log and the status display. This is the default setting.

14.2.4 Deleting the Event Log

To delete the event log that is displayed on the screen, follow the procedure below.
The event log is also deleted when you:

- Initialize the LV 5330.
- Perform an error reset operation.
- Turn off the power.

Procedure

$$
\text { STATUS } \rightarrow \text { F•1 LOG } \rightarrow \text { F•3 CLEAR }
$$

14.2.5 Setting the Event Log Overwrite Mode

To set the event log overwrite mode, follow the procedure below. The event log can record up to 1000 events. When the same error occurs successively, it is treated as a single event in the event log.

Procedure

$$
\text { STATUS } \rightarrow \text { F•1 LOG } \rightarrow \text { F•4 LOG MODE }
$$

Settings

OVER WR: Events after the 1000th event are written over the oldest logged events. This is the default setting.
STOP: Events after the 1000th event are not logged.

14.2.6 Saving the Event Log to USB Memory

To save the event log in text format to USB memory, follow the procedure below.
You can view the saved event log on a PC.
The file name is automatically set to "LOG" + the date and time that you have set using the system settings.
The date is written using the format that has been specified in the system settings. The time is written in this order: hour, minute, second.
Example: LOG20080501100859.txt
The file structure in the USB memory is shown below.
B USB memory
LGLOG
L ■ LOG*******hhmmss.TXT
F•6 USB MEMORY appears when USB memory is connected.
Procedure

$$
\text { STATUS } \rightarrow F \cdot 1 \text { LOG } \rightarrow \text { F•6 USB MEMORY } \rightarrow F \cdot 2 \text { STORE MEMORY }
$$

14.2.7 Deleting Event Logs in USB Memory

To delete an event log that has been saved to USB memory, follow the procedure below. To abort the deletion of the selected event log, press F•3 DELETE NO.
F•4 FILE DELETE appears when there are files in USB memory.

Procedure

STATUS \rightarrow F•1 LOG \rightarrow F•6 USB MEMORY \rightarrow F•4 FILE DELETE \rightarrow F••1 DELETE YES

14.3 Data Dump Settings

To configure data dump settings, press F•2 DATA DUMP in the status menu. You can display the data of a selected line and save the displayed data to USB memory.

STATUS \rightarrow F- 2 DATA DUMP \rightarrow

Figure 14-4 DATA DUMP menu

14.3.1 Data Dump Explanation

To show the data dump display, press F•2 DATA DUMP.

Figure 14-5 Data dump

Table 14-3 Data dump explanation

No.	Item	Explanation
1	LINE No.	The data dump display shows the data of the selected line. The selected line is indicated next to LINE No. To select a line, set F•5 F.D to LINE, and then turn F•D. Reference: Section 14.3.5, "Selecting Data Dump Lines and Samples"
2	Ancillary data	The type of ancillary data embedded in the SDI signal is indicated as shown in the table below.
3	SAMPLE	The sample numbers of the selected line are displayed here. To select a sample, set F•5 F.D to SAMPLE, and then turn F•D. Reference: Section 14.3.5, "Selecting Data Dump Lines and Samples"
4	Data	The data contained in the line samples is displayed here. You can change the data display format by pressing F•2 DISPLAY. Reference: Section 14.3.3, "Selecting the Data Dump Display Format"

14.3.2 Selecting the Data Dump Display Mode

To set the data dump display mode, follow the procedure below.

Procedure

STATUS \rightarrow F•2 DATA DUMP \rightarrow F•1 MODE

Settings

RUN: The displayed SDI input signal data is updated automatically. This is the default setting.
STOP: The displayed SDI input signal data is held.

14.3.3 Selecting the Data Dump Display Format

To select the data dump display format, follow the procedure below.
Procedure
STATUS \rightarrow F•2 DATA DUMP \rightarrow F•2 DISPLAY

Settings

SERIAL: The data is converted from parallel to serial data and displayed. This is the default setting.
COMPO: The data is converted from parallel to serial data, split into Y, Cb, and Cr or G , B, and R, and then displayed.
BINARY: The data is converted from parallel to serial data and displayed in binary format.

When DISPLAY is set to SERIAL:

HD signal	SD signal	LINK is set to DUAL

When DISPLAY is set to COMPO:

HD signal			
	We tue wo. 1		
			${ }_{0}$
		${ }^{204}$	2088 200
		${ }^{277}$	${ }_{168}^{208}$
		${ }_{3}^{000}$	${ }^{\text {3F }}$
		${ }^{376}$	${ }^{227}$
	(iasy	${ }^{263}$	218 203

SD signal				
daff oum	, Ine wo.			
[ime		$\begin{aligned} & \langle 360\rangle \\ & \langle 361\rangle \end{aligned}$	$\begin{gathered} \substack{\text { siff } \\ 0 \\ 000} \\ \hline \end{gathered}$	${ }_{\text {arf }}$
foid min und		(302)	${ }_{151}$	${ }^{208}$
(1antun und	$\xrightarrow{\text { cos }}$	(20)	100	${ }^{224}$
		(264)	200	200
(aman win			204 100	188 208
	(tay	(367)	${ }_{100}$	${ }^{20}$

When DISPLAY is set to BINARY:

SD signal

Figure 14-6 Data dump display formats

14．3．4 Selecting the Data Dump Display Start Position

To set the data dump display start position to EAV，follow the procedure below and press F•3 EAV JUMP．To set the data dump display start position to SAV，press F•4 SAV JUMP．

Procedure

STATUS \rightarrow F•2 DATA DUMP	$\rightarrow F \cdot F$ EAV JUMP
	$\rightarrow F \cdot 4$ SAV JUMP

EAV JUMP

DATA	IMP LINE SAMPLE	－y	$\mathrm{Cb} / \mathrm{Cr}$
［EAV］	$\begin{aligned} & \langle 1920\rangle \\ & \langle 1921\rangle \end{aligned}$		3 FF 000
［EAV］	＜1922）	000	000
［EAV］	＜1923＞	2 D 8	2 D
	＜1924〉	204	204
	＜1925＞	200	200
ADF	＜1928＞	040	000
ADF	＜1929＞	040	3FF
ADF	＜1930＞	040	3FF
DID	＜1931＞	040	2 E 7
DBN	＜1932＞	040	143
DC	＜1933＞	040	218
UDW	＜1934〉	040	18 F
UDW	＜1935〉	040	102

SAV JUMP

Figure 14－7 Data dump display start position

14．3．5 Selecting Data Dump Lines and Samples

To set the data dump line and sample numbers，turn $F \cdot D$ ．
To set whether to set the line or sample number when you turn $F \cdot D$ ，follow the procedure below．
When F•1 MODE is set to STOP，this setting is fixed to SAMPLE．F•5 F．D does not appear．
Procedure
STATUS \rightarrow F•2 DATA DUMP \rightarrow F•5 F．D

Settings

LINE：\quad Turning $F \cdot D$ changes the line number． Changing this setting will also change the picture，CINELITE，video signal waveform，and vector display line selection settings．
SAMPLE：Turning $F \cdot D$ changes the sample number．This is the default setting．

14.3.6 Saving a Data Dump to USB Memory

To save the data of the selected line in text format to USB memory, follow the procedure below. You can view the saved data dump on a PC.

The file name is automatically set to "DAT" + the date and time that you have set using the system settings.
The date is written using the format that has been specified in the system settings. The time is written in this order: hour, minute, second.

Example: DAT20080425150500.TXT
The file structure in the USB memory is shown below.
B USB memory
L DAT
L DAT********hhmmss.TXT
F•6 USB MEMORY appears when USB memory is connected.
Procedure

$$
\text { STATUS } \rightarrow \text { F•2 DATA DUMP } \rightarrow \text { F• } 6 \text { USB MEMORY } \rightarrow \text { F•2 STORE MEMORY }
$$

14.3.7 Deleting Data Dumps in USB Memory

To delete a data dump that has been saved to USB memory, follow the procedure below. To abort the deletion of the selected data dump, press $F \cdot 3$ DELETE NO.
F•4 FILE DELETE appears when there are files in USB memory.

Procedure

STATUS \rightarrow F•2 DATA DUMP \rightarrow F•6 USB MEMORY \rightarrow F•4 FILE DELETE $\rightarrow F \cdot 1$ DELETE YES

14.4 Audio Status Settings

To configure audio status settings, press F•3 AUDIO in the status menu. You can view the data of the selected channel.

14.4.1 Audio Status Display Explanation

To show the audio status display, press F•3 AUDIO.

Figure 14-8 Audio status display

Figure 14-4 Audio status display explanation

Item	Display	Explanation
DID	Number	Indicates the embedded audio groups.
	-	There are embedded audio groups in the signal.
RATE	There are no embedded audio groups in the signal.	
ACT	Number	Indicates the audio signal sampling rate.
		Professional
	Consumer	Indicates the embedded audio channels.
FORMAT	The signal format is intended for broadcast studios.	
AUDIO DATA		The signal format is intended for consumer audio.
	Yes	Indicates whether or not the selected signal is an audio signal.
	No	The signal is an audio signal.

Item	Display	Explanation
EMPHASIS		Indicates the audio signal emphasis specification.
	Not_indicated	There is no emphasis specification.
	No	No emphasis
	50/15us	The emphasis time constant is $50 / 15 \mathrm{us}$.
	CCIT_J17	CCITT J. 17 (800 Hz insertion loss of 6.5 dB)
	Reserved	Undefined data has been received.
SIGNAL LOCK		Indicates the whether or not the sampling frequency is locked.
	Yes	Locked
	No	Not locked
CH MODE		Indicates the channel mode specification.
	Not_indicated	There is no mode specification.
	Two-channel	Two-channel mode has been specified.
	Single-channel	Single-channel mode has been specified.
	Primary/secondary	Primary/secondary mode has been specified.
	Stereo	Stereo mode
	Reserved	Undefined data has been received.
RESOLUTION		Indicates the quantization resolution.
	24bits	24-bit resolution
	20bits	20-bit resolution
CHANNEL STATUS BIT		Displays the 192 channel-status bits.

14.4.2 Selecting Which Channels to Display

To select which channel to display in the audio status display, follow the procedure below. You can select a channel from the channels that have been assigned to 1st GROUP and 2nd GROUP in the audio menu.

Reference: 1st GROUP and 2nd GROUP \rightarrow Section 13.3, "Selecting Which Channels to Measure"
Procedure
STATUS \rightarrow F•3 AUDIO \rightarrow F•1 CH SELECT

Settings

Selectable range: The channels assigned to 1st GROUP and the channels assigned to 2nd GROUP. The default setting is CH1.

14.5 Ancillary Packet Settings

The LV 5330 can analyze and display the ancillary packets embedded in an SDI input signal. To display ancillary packets, press F•4 ANC PACKET in the status menu.

14.5.1 Explanation of the Ancillary Packet Display

In the ancillary packet display, DETECT appears next to packets that have been detected in the SDI input signal, and MISSING appears next to packets that have not been detected. To see whether or not ancillary packets have been detected, press F•4 ANC PACKET.

Figure 14-9 Ancillary packet display
Table 14-5 Explanation of the ancillary packet display

Item	Explanation	Compliant Standard	Lines
AUDIO CONTROL PACKET	An embedded audio control packet. Embedded audio streams contain groups that are composed of four channels each. Each group has a control packet. Reference: Section 14.4.1, "Audio Status Display Explanation"		9 and 571 (HD) 12 and 275 (SD)
EDH	A packet for detecting SD-SDI signal transmission errors. When multiple devices are connected, this packet can be used to determine which device caused an error. Both full-field and active picture errors are detected. This packet is not detected when the input signal is HD-SDI. Reference: Section 14.5.2, "EDH Packet Display Explanation"	SMPTE RP165	9 and 272 $(525 / 59.94)$

Item	Explanation	Compliant Standard	Lines
LTC	A type of time code. One is embedded per frame.	SMPTE ST 12-2	10 (HD)
VITC	A type of time code. One is embedded per field.	SMPTE ST 12-2	9 and 571 (HD)
PAYLOAD	A packet for identifying the input format. Reference: Section 14.5.3, "Format ID Display Explanation"	SMPTE ST 352 ARIB STD-B39	
EIA-708	A standard closed caption packet for digital video. Only numbers and letters of the alphabet are supported. It is embedded in the V-ANC area.		
EIA-608	A closed caption packet whose standard was originally developed for analog composite video. Only numbers and letters of the alphabet are supported. It is embedded in the V-ANC area.		
PROGRAM	A program information packet. It is embedded in the V-ANC area.	SMPTE ST 334	
DATA BROADCAST	A data broadcast packet. It is embedded in the V-ANC area.	SMPTE ST 334	
VBI	A packet embedded in the V-ANC area.	SMPTE ST 334	
CLOSED CAPTION 1 to 3	Subtitle packets. Up to three sets of subtitle data can be embedded in the V-ANC area. Reference: Section 14.5.4, "Subtitle Packet Display Explanation"	ARIB STD-B37	$\begin{aligned} & 19 \text { and } 582 \text { (HD) } \\ & 18 \text { and } 281 \text { (SD) } \end{aligned}$
NET-Q	An inter-stationary control signal Reference: Section 14.5.5, "Inter-Stationary Control Signal Display Explanation"	ARIB STD-B39	$\begin{aligned} & 20 \text { and } 583 \text { (HD) } \\ & 19 \text { and } 282(\mathrm{SD}) \end{aligned}$
TRIGGER PACKET	A trigger signal for data transmission.	ARIB STD-B35	$\begin{aligned} & 20 \text { and } 583 \text { (HD) } \\ & 19 \text { and } 282(\mathrm{SD}) \end{aligned}$
USER DATA 1 and 2	A packet for user-defined data.	ARIB TR-B23	$\begin{aligned} & 20 \text { and } 583 \text { (HD) } \\ & 19 \text { and } 282(\mathrm{SD}) \end{aligned}$

14.5.2 EDH Packet Display Explanation

The EDH display is divided into a flag display (UES, IDA, IDH, EDA, and EDH) and a CRC display (RECEIVED CRC). The flag display shows the contents of the EDH packets that are embedded in the SDI input signal. The CRC display shows the results of comparing the CRCs from the EDH packets to the CRCs computed by the LV 5330.

Because SDI output is only transmitted through the serial clock circuit, packets are not rewritten even if an error occurs in RECEIVED CRC.

To display EDH packets, follow the procedure below. F•1 EDH appears when the input signal is SD-SDI.

Procedure
STATUS \rightarrow F•4 ANC PACKET \rightarrow F•1 EDH

Figure 14-10 EDH Packet Display

Table 14-6 EDH Packet Display Explanation

Item	Display	Explanation
EDH FLAGS		Indicates the results of EDH packet error detection.
	NORMAL	This indication appears when all of the flags (UES, IDA, IDH, EDA, and EDH) are zeros and the CRC indications (RECEIVED CRC) are all NORMAL.
	ERROR	This indication appears when any of the flags (UES, IDA, IDH, EDA, and EDH) is 1 or when one of the CRC indications (RECEIVED CRC) is ERROR.
FF		Indicates the result of creating a CRC for an entire field and checking it for errors.
AP		Indicates the result of creating a CRC for the active video area and checking it for errors.
ANC		Indicates the result of creating a parity bit and checksum for the ancillary data and checking them for errors.
UES		Indicates whether or not the connected device supports EDH packets.
	0	The connected device supports EDH packets.
	1	The connected device does not support EDH packets.
IDA		Indicates internal data transmission errors in the devices before the LV 5330.
	0	No errors have been detected.
	1	An error has been detected.
IDH		Indicates internal data transmission errors in the device immediately before the LV 5330 .
	0	No errors have been detected.
	1	An error has been detected.
EDA		Indicates data transmission errors from the devices before the LV 5330.
	0	No errors have been detected.
	1	An error has been detected.
EDH		Indicates data transmission errors from the device immediately before the LV 5330.
	0	No errors have been detected.
	1	An error has been detected.
RECEIVED CRC FF		Indicates full-field CRC errors.
	NORMAL	The full-field CRC embedded in the EDH packets and the full-field CRC computed by the LV 5330 match.
	ERROR	The full-field CRC embedded in the EDH packets and the full-field CRC computed by the LV 5330 do not match.
RECEIVED CRC AP		Indicates active picture CRC errors.
	NORMAL	The active picture CRC embedded in the EDH packets and the active picture CRC computed by the LV 5330 match.
	ERROR	The active picture CRC embedded in the EDH packets and the active picture CRC computed by the LV 5330 do not match.

14.5.3 Format ID Display Explanation

The format ID packet is an ancillary packet for identifying the video signal format.
To display the format ID packet, follow the procedure below.
Procedure
STATUS \rightarrow F•4 ANC PACKET \rightarrow F•2 FORMAT ID

To select the format ID packet type, follow the procedure below.
Procedure
STATUS \rightarrow F•4 ANC PACKET \rightarrow F•2 FORMAT ID \rightarrow F•1 PACKET SELECT

Settings

SMPTE: The format ID packet specified by SMPTE ST 352 is displayed.
ARIB: The format ID packet specified by ARIB STD-B39 is displayed. This is the default setting.

Figure 14-11 Format ID display (ARIB)

Figure 14-12 Format ID display (SMPTE)
Table 14-7 Format ID display explanation

Item	Explanation
BYTE1 to 4	Display the format ID using binary values.
VERSION ID	Displays the format ID version.
PAYLOAD ID	Displays the video format.
DIGITAL INTERFACE	Displays the SDI input signal bit rate.
TRANSPORT STRUCTURE	Displays the transmission scan mode.
PICTURE STRUCTURE	Displays the picture scan mode.
PICTURE RATE	Displays the frame rate.
ASPECT RATIO	Displays the aspect ratio.
H SAMPLING	Displays the number of horizontal samples.
DISP ASPECT RATIO	Displays the aspect ratio. This item does not appear when F•1 PACKET SELECT is set to SMPTE.
SAMPLING STRUCTURE	Displays the sampling structure.
CHANNEL ASSIGNMENT	Displays the dual-link links.
DYNAMIC RANGE	Displays the dynamic range of a single pixel. This item does not appear when F•1 PACKET SELECT is set to ARIB.
ASPECT RATIO	Displays the aspect ratio. This item does not appear when F•1 PACKET SELECT is set to ARIB.
MAPPING MODE	Displays the mapping mode. This item does not appear when F•1 PACKET SELECT is set to ARIB.
BIT DEPTH	Displays the bit depth of a single pixel.

14.5.4 Subtitle Packet Display Explanation

To display the contents of the subtitle packets specified by the ARIB standard, follow the procedure below.
The ARIB standard allows for up to three different subtitle packets to be embedded in a signal. You can select and display one of those packets. You can select to display packet contents in text format or in dump format.

Procedure
STATUS \rightarrow F•4 ANC PACKET \rightarrow F•3 V-ANC ARIB \rightarrow F•1 CLOSED CAPTION

Figure 14-13 Subtitle packet display

Table 14-8 Subtitle packet display explanation

Item	Explanation
HEADER WORD1 to 4	Display the headers using binary values.
LINE NUMBER	Displays the numbers of the lines in which subtitle information is embedded.
CLOSED CAPTION TYPE	Displays the subtitle packet type.
ERROR CORRECTION	Indicates whether or not error correction has taken place.
CONTINUITY INDEX	Displays a counter that indicates packet continuity.
START PACKET FLAG	Displays the starting packet in the ancillary packets that compose the subtitle data group.
END PACKET FLAG	When packets are divided in MPEG-2 TS, this item indicates whether or not the end packet is included.
TRANSMISSION MODE	Displays the transmission mode.
FORMAT ID	Displays the subtitle packet type.
C.C. DATA ID	Displays the subtitle data identifier.
LANGUAGE ID	Displays the language identifier that is used when transmitting subtitles in multiple languages.

- Selecting the Subtitle Packet Type

To select the subtitle packet type, follow the procedure below. The values that you can set (1,2 , and 3) correspond to the order in which the subtitles are embedded.

Procedure
STATUS \rightarrow F•4 ANC PACKET \rightarrow F•3 V-ANC ARIB \rightarrow F•• CLOSED CAPTION \rightarrow F•2
CAPTION NUMBER

Settings

Selectable range: 1 to 3 (The default value is 1.)

- Selecting the Subtitle Packet Display Format

To select the subtitle packet display format, follow the procedure below.
In the dump display, you can view the entire packet by scrolling through it with $F \cdot D$.
Procedure

```
STATUS }->\textrm{F}\cdot4\mathrm{ ANC PACKET }->\textrm{F}\cdot3\textrm{V}\mathrm{ -ANC ARIB }->\textrm{F}\cdot1\mathrm{ CLOSED CAPTION }->\textrm{F}\cdot
DISPLAY
```


Settings

TEXT: The header section is analyzed and displayed in text format. This is the default setting.
DUMP: The data for a single packet is shown using a dump display.

- Selecting the Dump Display Format

To select the dump display format, follow the procedure below.
This setting is valid when $\mathrm{F} \cdot 1$ DISPLAY is set to DUMP.
Procedure
STATUS $\rightarrow \mathrm{F} \bullet 4$ ANC PACKET \rightarrow F•3 V-ANC ARIB \rightarrow F•• CLOSED CAPTION \rightarrow F•3
DUMP MODE

Settings

HEX: Data is displayed in hexadecimal format. This is the default setting.
BINARY: Data is displayed in binary format.

DUMP MODE = HEX

DUMP MODE $=$ BINARY

Figure 14-14 Dump display formats

14.5.5 Inter-Stationary Control Signal Display Explanation

To display the contents of the inter-stationary control signal specified by the ARIB standard, follow the procedure below.
You can select to display the signal contents in text format or in dump format.

Procedure

```
STATUS }->\textrm{F}\cdot4\mathrm{ ANC PACKET }->\textrm{F}\cdot3\mathrm{ V-ANC ARIB }->\textrm{F}\cdot2\mathrm{ NET-Q
```


Figure 14-15 Inter-stationary control signal display

Table 14-9 Inter-stationary control signal display explanation

Item	Explanation
LINE NUMBER	Displays the numbers of the lines in which the inter-stationary control signal is embedded.
ERROR CORRECTION	Indicates whether or not error correction has taken place.
CONTINUITY INDEX	Displays a counter that indicates packet continuity.
STATION CODE	Uses letters to display the code of the station that produced the signal.
DATE \& TIME	Displays the date and time when the signal was produced.
VIDEO CURRENT	Displays the current video mode.
AUDIO CURRENT	Displays the current audio mode.
DOWN MIX CURRENT	Displays the audio down-mix specification.
NEXT	Displays the next video mode, audio mode, or audio down-mix specification.
COUNTDOWN	Displays the countdown until the next video or audio signal mode switch.
TRIGGER SIGNAL	Displays the trigger signal, which indicates the signal timing.
COUNTER	Displays the counter for TRIGGER SIGNAL Q1 to Q4.
COUNTDOWN	Displays timing information for TRIGGER SIGNAL Q1 to Q4.
STATUS SIGNAL	Displays the status signal.

- Selecting the Inter-Stationary Control Signal Format

To select the inter-stationary control signal format, follow the procedure below.
In the dump display, you can view the entire packet by scrolling through it with $F \cdot D$.
Procedure
STATUS $\rightarrow F \cdot 4$ ANC PACKET $\rightarrow F \cdot 3$ V-ANC ARIB $\rightarrow F \cdot 2$ NET-Q $\rightarrow F \cdot 1$ DISPLAY

Settings
TEXT: The packet is analyzed and displayed in text format. This is the default setting.
DUMP: The data for a single packet is shown using a dump display.

- Selecting the Dump Display Format

To select the dump display format, follow the procedure below.
This setting is valid when $\mathrm{F} \cdot 1$ DISPLAY is set to DUMP.
Procedure
STATUS \rightarrow F•4 ANC PACKET \rightarrow F•3 V-ANC ARIB \rightarrow F•2 NET-Q \rightarrow F•2 DUMP MODE
Settings
HEX: Data is displayed in hexadecimal format. This is the default setting.
BINARY: Data is displayed in binary format.

DUMP MODE = HEX

DUMP MODE = BINARY

Figure 14-16 Dump display formats

- Turning Q Signals On and Off

To turn the displays for TRIGGER SIGNAL Q1 to Q32 on and off, follow the procedure below. This setting is valid when $F \cdot 1$ DISPLAY is set to TEXT.

Procedure

STATUS \rightarrow F•4 ANC PACKET \rightarrow F•3 V-ANC ARIB \rightarrow F•2 NET-Q \rightarrow F•6 next menu \rightarrow F•1 Q1 to F•2 Q32

Settings

ON: The specified Q signal is displayed. The default setting is 1 .
OFF: \quad The specified Q signal is not displayed.

14.5.6 EIA-708 Data Display Explanation

To display EIA-708 data, follow the procedure below.
You can set the display format to text or dump format. If you select the dump format, turn $\mathrm{F} \cdot \mathrm{D}$ to view all the data.

Procedure

$$
\text { STATUS } \rightarrow \text { F•4 ANC PACKET } \rightarrow \text { F•4 V-ANC SMPTE } \rightarrow \text { F•1 EIA-708 } \rightarrow \text { F•1 DISPLAY }
$$

Settings

TEXT: Data is displayed in text format. This is the default setting.
DUMP: A data dump is displayed in hexadecimal format.

Figure 14-17 EIA-708 data display

Table 14-10 EIA-708 data display explanation

Item	Description
FRAME RATE	Displays the information from the frame_rate field in the header of EIA-708 CDP packets.
TIME CODE	Displays whether the EIA-708 time_code_section is present or not. The LV 5330 checks whether the time_code_section is present or not by examining the time_code_present field in the header of CDP packets. If the time code is present, its value is also displayed.
CC	Displays whether the EIA-708 ccdata_section is present or not. The LV 5330 checks whether the ccdata_section is present or not by examining the ccdata_present field in the header of CDP packets.
SVCINFO	Displays whether the EIA-708 ccsvcinfo_section is present or not. The LV 5330 checks whether the ccsvcinfo_section is present or not by examining the ccsvcinfo_present field in the header of CDP packets.
Caption Data ch	Displays the type of the CC packet that was received.
XDS CHECKSUM	Displays the result of a comparison of a checksum computed on the XDS data that was received and the checksum field in the XDS packet.
CONTENT ADVISORY	Displays the content advisory information of the XDS data that was received.
COPY MANAGEMENT	Displays the copy management information of the XDS data that was received.

14.5.7 EIA-608 Data Display Explanation

To display EIA-608 data, follow the procedure below.
You can set the display format to text or dump format. If you select the dump format, turn $F \cdot D$ to view all the data.

Procedure

$$
\text { STATUS } \rightarrow \text { F•4 ANC PACKET } \rightarrow \text { F•4 V-ANC SMPTE } \rightarrow \text { F•2 EIA-608 } \rightarrow \text { F•1 DISPLAY }
$$

Settings

TEXT: \quad Data is displayed in text format. This is the default setting.
DUMP: A data dump is displayed in hexadecimal format.

Figure 14-18 EIA-608 data display

14.5.8 Program Data Display Explanation

To display whether ATSC A/65 program description packets are present or not, follow the procedure below. For each descriptor, if its ID is present, "DETECT" is displayed; if its ID is not present, "MISSING" is displayed.

Procedure
STATUS \rightarrow F•4 ANC PACKET \rightarrow F•4 V-ANC SMPTE \rightarrow F•3 PROGRAM

Figure 14-19 Program data display

14.5.9 VBI Data Display Explanation

To display VBI data, follow the procedure below.
Procedure
STATUS \rightarrow F•4 ANC PACKET \rightarrow F•4 V-ANC SMPTE \rightarrow F•5 VBI

Figure 14-20 VBI data display

14.6 Error Settings

To configure error settings, press F•5 ERROR CONFIG in the status menu. You can configure remote control connector error transmission, the error count, error detection, error detection levels, and the error displays.

STATUS \rightarrow F. 5 ERROR CONFIG \rightarrow

REMOTE ERR OUT NEGAT I VE	COUNT RATE 1 sec	$\begin{aligned} & \hline \text { ERROR } \\ & \text { DETEGT } \end{aligned}$	$\begin{gathered} \hline \text { ERROR } \\ \text { LEVEL } \end{gathered}$	$\begin{aligned} & \hline \text { ERROR } \\ & \text { DISPLAY } \\ & \text { REFRESH } \end{aligned}$	up menu

FF.1 FF.2 FF.3 F.4 FF.5 F.6 F.7

Figure 14-21 ERROR CONFIG menu

14.6.1 Selecting the Alarm Signal Polarity

When an error occurs in one of the items set to ON in the menu that appears when you press F-3 ERROR DETECT, an alarm signal is transmitted through pin 14 of the remote control connector.
To set the polarity of the alarm signal, follow the procedure below.
Reference: Section 17.1.3, "Transmitting Alarm Signals"
Procedure

$$
\text { STATUS } \rightarrow \text { F•5 ERROR CONFIG } \rightarrow \text { F•1 REMOTE ERR OUT }
$$

Settings

OFF: An alarm signal is not transmitted.
POSITIVE: A high signal is transmitted when an error occurs.
NEGATIVE: A low signal is transmitted when an error occurs. This is the default setting.

14.6.2 Selecting the Error Count Rate

When errors occur in items set to ON in the menu that appears when you press F•• 3 ERROR DETECT, the ERROR COUNT indication in the status display increases.
To set the rate at which the ERROR COUNT indication increases, follow the procedure below.

Procedure
STATUS \rightarrow F• 5 ERROR CONFIG \rightarrow F•2 COUNT RATE

Settings

V RATE: The ERROR COUNT indication increases each time that there is an error in a field (when the input format is interlaced or segmented frame) or a frame (when the input format is progressive). Even if multiple errors occur in the same field (or frame), the ERROR COUNT indication only increases by one.
1sec: Errors are counted by seconds. Even if multiple errors occur within the same second, the ERROR COUNT indication only increases by one. This is the default setting.

14.6.3 Configuring Error Detection Settings

To configure error detection settings, press F•3 ERROR DETECT in the status menu. The errors that you set to ON here are detected and displayed in the status display.

STATUS \rightarrow F.5 ERROR CONFIG \rightarrow F.3 ERROR DETECT \rightarrow

Figure 14-22 ERROR DETECT menu

- Detecting TRS Errors

To detect TRS errors, follow the procedure below. If you set this setting to ON, TRS error information appears next to TRS in the status display.

Procedure

$$
\text { STATUS } \rightarrow \text { F•5 ERROR CONFIG } \rightarrow \text { F•3 ERROR DETECT } \rightarrow \text { F•1 TRS ERROR }
$$

Settings

ON: TRS errors are detected. This is the default setting.
OFF: TRS errors are not detected.

- Detecting Line Number Errors

To detect line number errors, follow the procedure below. If you set this setting to ON, line number error information appears next to LINE NUMBER in the status display.
This setting is valid when the input signal is HD-SDI.

Procedure

STATUS \rightarrow F•5 ERROR CONFIG \rightarrow F•3 ERROR DETECT \rightarrow F•2 LINE ERROR

Settings

ON: Line number errors are detected. This is the default setting.
OFF: Line number errors are not detected.

- Detecting CRC Errors

To detect CRC errors, follow the procedure below. If you set this setting to ON, CRC error information appears next to CRC LUMA and CRC CHROMA in the status display. This setting is valid when the input signal is HD-SDI.

Procedure

$$
\text { STATUS } \rightarrow \text { F•5 ERROR CONFIG } \rightarrow \text { F•3 ERROR DETECT } \rightarrow \text { F•3 CRC ERROR }
$$

Settings

ON: \quad CRC errors are detected. This is the default setting.
OFF: CRC errors are not detected.

- Detecting EDH Errors

To detect EDH errors, follow the procedure below. If you set this setting to ON, EDH error information appears next to EDH in the status display.
This setting is valid when the input signal is SD-SDI.

Procedure

STATUS \rightarrow F•5 ERROR CONFIG \rightarrow F•3 ERROR DETECT \rightarrow F•4 EDH ERROR

Settings

ON: EDH errors are detected. This is the default setting.
OFF: EDH errors are not detected.

- Detecting Parity Errors

To detect parity errors in ancillary data, follow the procedure below. If you set this setting to ON, parity error information appears next to PARITY in the status display.

Procedure
STATUS \rightarrow F•5 ERROR CONFIG \rightarrow F•3 ERROR DETECT \rightarrow F•6 next menu \rightarrow F•1 PARITY ERROR

Settings

ON: Parity errors are detected. This is the default setting.
OFF: Parity errors are not detected.

- Detecting Checksum Errors

To detect checksum errors in ancillary data, follow the procedure below. If you set this setting to ON, checksum error information appears next to CHECKSUM in the status display.

Procedure

```
STATUS \(\rightarrow\) F•5 ERROR CONFIG \(\rightarrow\) F•3 ERROR DETECT \(\rightarrow\) F• 6 next menu \(\rightarrow\)
F•2 CHECKSUM ERROR
```


Settings

ON: Checksum errors are detected. This is the default setting.
OFF: Checksum errors are not detected.

- Detecting Gamut Errors

To detect gamut errors, follow the procedure below. If you set this setting to ON, gamut error information appears next to GAMUT in the status display.
To set the threshold for gamut error detection, press F•4 ERROR LEVEL.
Procedure
STATUS \rightarrow F•5 ERROR CONFIG \rightarrow F•3 ERROR DETECT \rightarrow F•6 next menu \rightarrow F•4 GAMUT ERROR

Settings

ON: Gamut errors are detected.
OFF: Gamut errors are not detected. This is the default setting.

- Detecting Composit Gamut Errors

To detect gamut errors in a pseudo-composite signal converted from the component signal, follow the procedure below. If you set this setting to ON, composite gamut error information appears next to COMP.GAMUT in the status display.
To set the threshold for composite gamut error detection, press F•4 ERROR LEVEL.

Procedure

STATUS \rightarrow F•5 ERROR CONFIG \rightarrow F•3 ERROR DETECT \rightarrow F•6 next menu \rightarrow F-5 C.GAMUT ERROR

Settings

ON: Composite gamut errors are detected.
OFF: Composite gamut errors are not detected. This is the default setting.

- Detecting BCH Errors

To detect BCH errors in the embedded audio, follow the procedure below. If you set this setting to $\mathrm{ON}, \mathrm{BCH}$ error information appears next to BCH in the status display. This setting is valid when the input signal is HD-SDI.

Procedure

$$
\begin{aligned}
& \text { STATUS } \rightarrow \text { F•5 ERROR CONFIG } \rightarrow \text { F•3 ERROR DETECT } \rightarrow \text { F•6 next menu } \rightarrow \\
& \text { F•6 next menu } \rightarrow \text { F•3 BCH ERROR }
\end{aligned}
$$

Settings

ON: $\quad \mathrm{BCH}$ errors are detected. This is the default setting.
OFF: $\quad \mathrm{BCH}$ errors are not detected.

- Detecting Audio CRC Errors

To detect CRC errors in the embedded audio, follow the procedure below. If you set this setting to ON, audio CRC error information appears next to CRC in the status display.

Procedure

STATUS \rightarrow F•5 ERROR CONFIG \rightarrow F•3 ERROR DETECT \rightarrow F•6 next menu \rightarrow
F•6 next menu \rightarrow F•4 AUDIO CRC

Settings

ON: Audio CRC errors are detected.
OFF: Audio CRC errors are not detected. This is the default setting.

14.6.4 Setting the Gamut Filter

If you are detecting gamut errors or composite gamut errors, you can set a low-pass filter to remove transient errors such as overshoot.
To set the gamut filter, follow the procedure below.

Procedure

$$
\text { STATUS } \rightarrow \text { F•5 ERROR CONFIG } \rightarrow \text { F•4 ERROR LEVEL } \rightarrow \text { F•3 GAMUT FILTER }
$$

Settings

1M: A 1 MHz low-pass filter is applied during error detection. This is the default setting.
2.8M: \quad A 2.8 MHz (when the input signal is HD) or 1 MHz (when the input signal is SD) low-pass filter is applied during error detection.
OFF: A low-pass filter is not applied during error detection.

14.6.5 Setting the Detection Level Unit

To select the unit for the error detection levels, follow the procedure below.
The unit that you select here is also applied to the 5 bar screen.
Reference: Section 12.7.2, "Selecting the 5 Bar Display Unit"
Procedure
STATUS \rightarrow F•5 ERROR CONFIG \rightarrow F•4 ERROR LEVE \rightarrow F•6 UNIT

Settings

\%: The levels are set as percentages. This is the default setting.
mV : The levels are set as mV .

14.6.6 Setting Gamut Error Detection Levels

To set gamut error detection levels, press $\mathrm{F} \cdot 1$ GAMUT in the status menu.
The settings that you make here also apply to the R, G, and B bars in the 5 bar display. The unit for setting the level is the same as the unit that was specified with F•6 UNIT.
Reference: Section 12.7.1, "5 Bar Display Explanation"
STATUS \rightarrow F. 5 ERROR CONFIG \rightarrow F•4 ERROR LEVEL \rightarrow F•1 GAMUT \rightarrow

Figure 14-23 GAMUT menu

- Setting the Upper Limit

To set the gamut error upper limit, follow the procedure below. An error is detected when the SDI input signal level exceeds the specified value.
If you press $\mathrm{F} \cdot \mathrm{D}$, the gamut error upper limit will be reset to its default value of 109.4% or 765.8 mV .

Procedure

```
STATUS }->\mathrm{ F•5 ERROR CONFIG }->\mathrm{ F•4 ERROR LEVEL }->\mathrm{ F•1 GAMUT
```


Settings

Selectable range: 90.8 to 109.4 \% (The default setting is 109.4 \%.)
635.6 to 765.8 mV (The default setting is 765.8 mV .)

- Setting the Lower Limit

To set the gamut error lower limit, follow the procedure below. An error is detected when the SDI input signal level goes below the specified value.
If you press $F \cdot D$, the lower limit will be reset to its default value of -7.2% or -50.4 mV .

Procedure

```
STATUS }->\textrm{F}55\mathrm{ ERROR CONFIG }->\textrm{F}\cdot4\mathrm{ ERROR LEVEL }->\textrm{F}1\mathrm{ GAMUT
```

$\rightarrow \mathrm{F} \cdot 2$ GAMUT LOWER \%
\rightarrow F•2 GAMUT LOWER mV

Settings

Selectable range: -7.2 to 6.1 \% (The default setting is -7.2%.)
-50.4 to 42.7 mV (The default setting is -50.4 mV .)

14.6.7 Setting Composite Gamut Error Detection Levels

To set composite gamut error detection levels, press F•2 COMPOSIT GAMUT in the status menu.
The settings that you make here also apply to the CMP bar in the 5 bar display. The unit for setting the level is the same as the unit that was specified with F•6 UNIT.
Reference: Section 12.7.1, " 5 Bar Display Explanation"

Figure 14-24 COMPOSIT GAMUT menu

- Setting the Upper Limit

To set the composite gamut error upper limit, follow the procedure below. An error is detected when the level of the pseudo-composite signal that is converted from the SDI input signal exceeds the specified value.
If you press $F \cdot D$, the upper limit will be reset to its default value of $135.0 \%, 963.9 \mathrm{mV}$, or 945.0 mV .

Procedure
STATUS \rightarrow F•5 ERROR CONFIG \rightarrow F•4 ERROR LEVEL \rightarrow F•2 COMPOSIT GAMUT
\rightarrow F•1 C.GAMUT UPPER \%
\rightarrow F•1 C.GAMUT UPPER mV

Settings

Selectable range: 90.0 to 135.0 \% (The default setting is 135.0 \%.)
642.6 to 963.9 mV (The default setting is 963.9 mV .) (NTSC)
630.0 to 945.0 mV (The default setting is 945.0 mV .) (PAL)

- Setting the Lower Limit

To set the composite gamut error lower limit, follow the procedure below. An error is detected when the level of the pseudo-composite signal that is converted from the SDI input signal goes below the specified value.
If you press $F \cdot D$, the lower limit will be reset to its default value of $-40.0 \%,-285.6 \mathrm{mV}$, or -280.0 mV.

Procedure
STATUS \rightarrow F•5 ERROR CONFIG \rightarrow F•• 4 ERROR LEVEL \rightarrow F•2 COMPOSIT GAMUT
\rightarrow F•2 C.GAMUT LOWER \%
\rightarrow F•2 C.GAMUT LOWER mV

Settings

Selectable range: -40.0 to -20.0 \% (The default setting is -40.0%.)

$$
\begin{aligned}
& -285.6 \text { to }-142.8 \mathrm{mV} \text { (The default setting is }-285.6 \mathrm{mV} .) \text { (NTSC) } \\
& -280.0 \text { to }-140.0 \mathrm{mV} \text { (The default setting is }-280.0 \mathrm{mV} .) \text { (PAL) }
\end{aligned}
$$

14.6.8 Selecting the Error Display Format

You can select how errors are indicated after the signal returns to normal. You can select the error indication format from one of the options listed below. Error information appears in the status display and in the upper right of the screen.

Procedure
STATUS \rightarrow F•5 ERROR CONFIG \rightarrow F•5 ERROR DISPLAY

Settings

REFRESH: Error indications disappear one second after the signal returns to normal. This is the default setting.
HOLD: Error indications do not disappear until an error reset operation is performed. The error count increases normally.

14.7 Resetting Errors

To reset errors, follow the procedure below. After errors have been reset, the status display changes as follows:

- ERROR COUNT is reset to 0 .
- FROM RESET becomes 00:00:00.
- The event log is deleted.

Procedure
STATUS \rightarrow F•6 ERROR RESET

15. View Finder Display

The LV 5330 can display the picture of a composite video signal received from a camera. Apply a composite video signal to INPUT VIEW FINDER on the back panel, and press VIEW FINDER. The composite signal cannot be shown in other displays (such as the video signal waveform and vector displays), and its picture cannot be incorporated into the multi-screen display.

The input format (NTSC or PAL) is detected automatically and displayed in the upper left of the screen.

In the view finder display, the menu and the information displays at the top of the screen disappear approximately five seconds after the last operation is performed. To redisplay the menu and information, perform some kind of operation.

Figure 15-1 View finder display

15.1 Adjusting the Brightness

You can adjust the brightness of the picture by turning BRIGHT.
Pressing BRIGHT returns the brightness to its default setting (0%).

Settings

Selectable range: -50% to 50% (The default value is 0%.)

15.2 Adjusting the Contrast

You can adjust the contrast of the picture by turning CONT.
Pressing CONT returns the contrast to its default setting (100 \%).

Settings

Selectable range: 50% to 200% (The default value is 100%.)

15.3 Adjusting the Chroma Gain

To adjust the chroma gain, follow the procedure below. If you press $F \cdot D$, the chroma gain will be reset to its default value of 100 .

Procedure
VIEW FINDER \rightarrow F• 5 CHROMA $\%$

Settings

Selectable range: 50 to 150 (The default setting is 100.)

15.4 Adjusting the Aperture

To adjust the aperture, follow the procedure below. A larger number will result in more well-defined outlines. If you press F•D, the aperture will be reset to its default value of 0 .

Procedure
VIEW FINDER \rightarrow F•6 APERTURE

Settings

Selectable range: 0 to 200 (The default setting is 0 .)

16. Multi-Screen Display Feature

The LV 5330 has eight display modes: picture, CINELITE, CINEZONE, video signal waveform, vector, audio, status, and view finder. The display that only shows one mode at a time is referred to as the single-screen display. The display that shows combinations of different modes at the same time is referred to as the multi-screen display. The CINEZONE and view finder display modes cannot be incorporated into the multi-screen display.

To show the multi-screen display, press MULTI, and then press $\mathrm{F} \cdot 1$ MODE to select the combination of display modes that you want to show.

MULTT \rightarrow

Figure 16-1 Multi-screen display menu

16.1 Selecting the Multi-Screen Display Format

To select the multi-screen display format, follow the procedure below.
Procedure
MULTI \rightarrow F•1 MODE

Settings
4SCREEN: The vector, video signal waveform, status, and picture (or CINELITE) displays appear. You can change the status display to the audio or 5 bar display by pressing $\mathbb{F} \cdot 7$ LOWER. This is the default setting.
PIC_WFM: The picture (or CINELITE) and video signal waveform displays appear one on top of the other. Approximately five seconds after the last operation is performed, the menu and the information displays at the top of the screen disappear.
WFM_VEC: The video signal waveform and vector displays appear next to each other.
WFM_PIC: The video signal waveform and the picture appear.
WFM_AUD: The audio and video signal waveform displays appear next to each other.
PIC+WFM: The picture (or CINELITE) and video signal waveform displays are superimposed.
The picture is displayed with the contrast set to 60%.
PIC+VECT: The picture (or CINELITE) and vector waveform displays are superimposed. The picture is displayed with the contrast set to 60%.
AUDIO: The audio display appears.

MODE $=4$ SCREEN

MODE = WFM_VEC

MODE $=$ WFM_AUD

MODE $=$ PIC+VECT

MODE = PIC_WFM

MODE = WFM_PIC

MODE $=$ PIC+WFM

MODE = AUDIO

Figure 16-2 Multi-screen display formats

16.2 Setting Each Measurement Mode

Most of the single-screen display settings apply to the multi-screen display as well.
To configure the video signal waveform, CINELITE, vector, audio, or status display from the multi-screen display, follow the procedure below. Setting changes made in the multi-screen display will also change the single-screen display settings.

The single-screen display picture display settings (except for the line select feature) and WFM INTEN, VECTOR INTEN, and SCALE INTEN settings do not affect the settings in the multi-screen display. The VECTOR INTEN value set using MULTI VEC and the WFM INTEN value set using MULTI WFM are the same. Also, the SCALE INTEN value set using MULTI WFM and the SCALE INTEN value set using MULTI VEC are the same.

Procedure
MULTI \rightarrow F•* MULTI WFM
$\rightarrow F \cdot *$ MULTI CINELITE
\rightarrow F•* MULTI VEC
$\rightarrow F^{\bullet *}$ MULTI STATUS
\rightarrow F•* MULTI AUDIO

* $\quad \mathrm{F} \cdot *$ represents any of the function keys $\mathrm{F} \cdot 2$ to $\mathrm{F} \cdot 5$ and varies depending on the displayed contents.

16.3 Selecting the Displayed Contents in 4 SCREEN Display Mode

To select what is displayed in the lower left of the screen when $F \cdot 1$ MODE is set to 4 SCREEN, follow the procedure below.

Procedure

MULTI \rightarrow F•7 LOWER

Settings

STATUS: The status display appears in the lower left of the multi-screen display. This is the default setting.
AUDIO: The audio display appears in the lower left of the multi-screen display.
5BAR: The 5 bar display appears in the lower left of the multi-screen display. This setting cannot be chosen when the LV 5330 is in dual link mode.

Figure 16-3 Displayed contents in 4 SCREEN display mode

17. External Interface

17.1 Remote Control Feature

You can use the remote control connector on the rear panel to load presets, transmit alarms, and perform other operations. Use the supplied 15 -pin D-sub connector.

17.1.1 Remote Control Connector Specifications

This section contains a diagram of the remote control connector, which is located on the rear panel, and a table that describes its pin alignment.

Do not apply voltage to the output pins.
The input pins are all pulled up to +3.3 V . Do not apply negative voltages or voltages above +5 V to the input pins.

Figure 17-1 Remote control connector (inch screws)
Table 17-1 Remote control connector pin alignment

Pin No.	Name	Input or Output	Explanation
1	GND	-	Grounding pin
2	/P1	Input	Loads preset 1
3	/P2	Input	Loads preset 2
4	/P3	Input	Loads preset 3
5	/P4	Input	Loads preset 4
6	/P5	Input	Loads preset 5
7	/P6	Input	Loads preset 6
8	/P7	Input	Loads preset 7
9	/P8	Input	Loads preset 8
10	/ACH	Input	Selects channel A
11	/BCH	Input	Selects channel B
12	RESERVED	Input	Reserved
13	TALLY	Input	Tally light
14	ALARM	Output	Alarm output
15	GND		Grounding pin

* The input pins are active-low. When you use the remote control feature, make sure that you ground each connector. The pins operate on pulse widths at or above 1 second.
After configuring a setting, wait for 1 second or more before configuring the next setting.

17.1.2 Loading Presets

You can use pins 2 through 9 (/P1 through /P8) of the remote control connector to load presets. There are two different methods for loading presets. To choose which method to use, follow the procedure below.

Procedure
SYSTEM \rightarrow F•4 INTRFACE\&LICENSE \rightarrow F•1 REMOTE

Settings

BIT: $\quad /$ P1 through /P8 are assigned to preset numbers 1 through 8, and you can load one of the eight presets. This is the default setting.
BINARY: /P5 is set to the MSB, and /P1 is set to the LSB. You can load one of 30 presets by specifying a binary value.

17.1.3 Transmitting Alarm Signals

An alarm signal is transmitted from pin 14 of the remote control connector when the LV 5330 internal temperature is $80^{\circ} \mathrm{C}$ or greater, when the fan is broken, or when an error occurs in one of the items set to ON in the menu that appears when you press F•3 ERROR DETECT.
To set the polarity of the alarm signal, follow the procedure below. You can also turn alarm transmission off.

Procedure
STATUS \rightarrow F•5 ERROR CONFIG \rightarrow F•1 REMOTE ERR OUT

Settings

OFF: An alarm signal is not transmitted.
POSITIVE: A high signal is transmitted when an error occurs.
NEGATIVE: A low signal is transmitted when an error occurs. This is the default setting.

17.1.4 Displaying a Tally Light

A green tally light appears at the top of the display when pin 13 of the remote connector is connected to a ground.
The tally light only appears when the display mode is set to picture, CINELITE, CINEZONE, or view finder.

Figure 17-2 Tally light

17.2 TELNET

You can use the Ethernet connector on the rear panel and a PC to perform operations remotely. The operations that you can perform are approximately the same as those that you can perform using the front panel.

17.2.1 Procedure

1 Set the IP address, subnet mask, and gateway on the LV 5330.
These items can be configured in the system settings.
If necessary, ask you network administrator what values you should use.
Reference: Section 5.4.2, "Configuring Ethernet Settings"
2 Restart the LV 5330.
The IP address, subnet mask, and gateway values that you set become valid.
3 Connect a cable to the LV 5330 ETHER connector.
Use a cross cable to connect the LV 5330 to a PC directly. Use a straight cable to connect the LV 5330 to a PC through a hub.

4 Start TELNET.
After you start TELNET, the following display appears.
For information on how to start TELNET, see your PC user's manual.

```
login:
```

5 Enter the login name, and press Enter.
The login name is LV5330. Be sure to use capital letters.
You cannot change the login name.

```
login: LV5330
```

6 Enter the password, and press Enter.
The password is LV5330. Be sure to use capital letters.
You cannot change the password.

```
Password: ******
```

7 Enter commands.
After you enter the password, the following command prompt appears.
Enter commands while referring to section 17.2.2, "How to Enter Commands," and section 17.2.3, "TELNET Commands."

```
LV5330>
```


17.2.2 How to Enter Commands

The command format is explained below. Commands can be entered using uppercase or lowercase letters. To query a setting on the LV 5330, use a question mark as the parameter.

```
LV5330> [Command] + [Space] + [Parameter]
```

Examples of how to enter commands are shown below.

- Showing the status display

```
LV5330> STATUS
```

- Displaying the center marker in the picture display

```
LV5330> PICTURE:MARKER:CENTER ON
```

- Querying the vector intensity

LV5330> VECTOR:INTEN:VECTOR?

17.2.3 TELNET Commands

TELNET commands follow the LV 5330 menu structure. For explanations of each command, see the explanations of their corresponding menu items in this manual.

Table 17-2 TELNET Commands

Command	Parameters
SDI	A, B, or ?
REFERENCE	INT, EXT, or?
PICTURE	-
PICTURE:MARKER:ASPECT_HD	2.35_1, 1.85_1, 1.66_1, 14_9, 13_9, 4_3, OFF, or ?
PICTURE:MARKER:ASPECT_SD	2.35_1, 1.85_1, 1.66_1, 16_9, 14_9, 13_9, OFF, or?
PICTURE:MARKER:SAFE_ACTION	95, 93, 90, OFF, or ?
PICTURE:MARKER:SAFE_TITLE	88, 80, OFF, or?
PICTURE:MARKER:CENTER	ON, OFF, or?
PICTURE:MARKER:SHADOW	ON, OFF, or?
PICTURE:LINE_SEL:LINE_SELECT	ON, OFF, or ?
PICTURE:LINE_SEL:LINE_NUMBER	1 to 1125 , or?
PICTURE:LINE_SEL:FIELD	1, 2, FRAME, or ?
PICTURE:SIZE	FIT, X1, X2, FULL, or ?
PICTURE:CC:SYSTEM	608(708), 608(608), VBI, or?
PICTURE:CC:CC	OFF, CC1, CC2, CC3, CC4, TEXT1, TEXT2, TEXT3, TEXT4, or?
PICTURE:DISPLAY:GAMUT_ERROR	DISP_ON, DISP_OFF, or?
PICTURE:DISPLAY:RGB	RGB, MONO, RG-, R-B, -GB, R--, -G-, --B, or ?
PICTURE:DISPLAY:SQUEEZE	ON, OFF, or?
PICTURE:DISPLAY:IP_CONV	ON, OFF, or?
PICTURE:CHROMA	0 to 150, or?
PICTURE:APERTURE	0 to 200, or ?
PICTURE:BRIGHT	-50 to 50, or?
PICTURE:CONTRAST	50 to 200, or?
CINELITE	-

Command	Parameters
CINELITE:FSTOP	-
CINELITE:DISPLAY	-
CINELITE:P1	?
CINELITE:P2	?
CINELITE:P3	?
CINELITE:DSIPLAY:LINE_NUMBER	1 to 1125 , or?
CINELITE:DSIPLAY:SAMPLE	0 to 2749, or?
CINELITE:DISPLAY:MEAS_POS	$\mathrm{P} 1, \mathrm{P} 2, \mathrm{P} 3$, or ?
CINELITE:DISPLAY:MEAS_SIZE	1X1, 3X3, 9X9, or?
CINELITE:DISPLAY:MEAS_DISP	P1P2P3, P1P2--, P1--P3, --P2P3, P1----, --P2--, ----P3, or ?
CINELITE:FSTOP:REF_SET	-
CINELITE:DISPLAY:\%/RGB	LEVEL\%, RGB\%, RGB255, or ?
CINELITE:ADVANCE	$\mathrm{OFF}, \mathrm{P}+\mathrm{V}, \mathrm{P}+\mathrm{W}, \mathrm{P}+\mathrm{V}+\mathrm{W}$, or ?
CINELITE:GAMMA	0.45, USER-1, USER-2, USER-3/ USER-A, USER-B, USER-C, USER-D, USER-E, or?
CINELITE:CAL:TABLE_CLEAR	-
CINELITE:CAL:DATA_CLEAR	-
CINELITE:CAL:SET	-
CINELITE:CAL:CAL_F	$22.0,16.0,11.0,8.0,5.6,4.0,2.8,2.0$, or?
CINELITE:CAL2:TBL_CLR	-
CINELITE:CAL2:REGAMMA	ON, OFF, or ?
CINEZONE	-
CINEZONE:MODE	ZONE, SEARCH, or ?
CINEZONE:ZONE_DISPLAY	LINEAR, STEP, or ?
CINEZONE:\%DISPLAY	OFF, ON, or ?
CINEZONE:DISPLAY	-
CINEZONE:SEARCH:LEVEL	-7.3 to 109.4, or?
CINEZONE:SEARCH:RANGE	0.5 to 100.0, or ?
CINEZONE:UPPER	-6.3 to 109.4, or?
CINEZONE:LOWER	-7.3 to 108.4, or ?
WFM	-
WFM:INTEN:WFM	-128 to 127, or ?
WFM:INTEN:SCALE	-8 to 7, or?
WFM:GAIN:VAR	CAL, VAR, or ?
WFM:GAIN:MAG	1,5, or ?
WFM:GAIN:FILTER	FLAT, LOW_PASS, or ?
WFM:GAIN:C.FILTER	FLAT, FLAT+LUM, LUMA, or ?
WFM:SWEEP:SWEEP	H, V, or ?
WFM:SWEEP:H_SWEEP	$1 \mathrm{H}, 2 \mathrm{H}$, or?
WFM:SWEEP:V_SWEEP	$1 \mathrm{~V}, 2 \mathrm{~V}$, or ?
WFM:SWEEP:FIELD	1, 2, or ?
WFM:SWEEP:H_MAG	1, 10, 20, ACTIVE, BLANK, or ?
WFM:SWEEP:V_MAG	1,20, 40, or ?
WFM:LINE_SEL:LINE_SELECT	ON, OFF, or ?
WFM:LINE_SEL:LINE_NUMBER	1 to 1125, or ?
WFM:LINE_SEL:FIELD	1, 2, FRAME, or ?

Command	Parameters
WFM:COLOR:MATRIX	YCBCR, GBR, RGB, COMPOSIT, or ?
WFM:COLOR:YGBR	ON, OFF, or?
WFM:COLOR:YRGB	ON, OFF, or?
WFM:COLOR:GBR_COLOR	ON, OFF, or?
WFM:COLOR:RGB_COLOR	ON, OFF, or?
WFM:COLOR:SETUP	$0,7.5$, or ?
WFM:SCALE:UNIT	V\%, V, \%, 3FF, 1023, or ?
WFM:SCALE:COLOR75P	ON, OFF, or?
WFM:EAV_SAV	REMOVE, PASS, or ?
WFM:TIMING	NORMAL, PASS, or?
WFM:MODE	OVERLAY, PARADE, TIMING, or ?
WFM:DISPLAY:CH1	ON, OFF, or?
WFM:DISPLAY:CH2	ON, OFF, or?
WFM:DISPLAY:CH3	ON, OFF, or?
VECTOR	-
VECTOR:INTEN:VECTOR	-128 to 127, or?
VECTOR:INTEN:SCALE	-8 to 7, or?
VECTOR:INTEN:IQ	ON, OFF, or?
VECTOR:INTEN:MARKER	ON, OFF, or?
VECTOR:GAIN:VAR	CAL, VAR, or ?
VECTOR:GAIN:MAG	1, 5, IQ-MAG, or ?
VECTOR:LINE_SEL:LINE_SELECT	ON, OFF, or ?
VECTOR:LINE_SEL:LINE_NUMBER	1 to 1125, or?
VECTOR:LINE_SEL:FIELD	1, 2, FRAME, or ?
VECTOR:COLOR:MATRIX	COMPONET, COMPOSIT, or?
VECTOR:COLOR:SETUP	0, 7.5, or ?
VECTOR:COLOR:COLOR_BAR	100\%, 75%, or ?
VECTOR:EXTREF_PHASE:SDI_NUMBER	1, 2, 3, 4, 5, 6, 7, 8, or ?
VECTOR:EXTREF_PHASE:SDI_MEMORY	-
VECTOR:EXTREF_PHASE:MEMORY_CLEAR	-
VECTOR:EXTREF_PHASE:USER_REF_SET	-
VECTOR:EXTREF_PHASE:REF_DEFAULT	-
VECTOR:DISPLAY	VECTOR, 5BAR, EXTPHASE, or ?
MULTI	-
MULTI:MODE	4SCREEN, PIC_WFM, WFM_VEC, WFM_PIC, WFM_AUD, PIC+WFM, PIC+VECT, AUDIO, or?
AUDIO:MODE	LEVEL, VALUE, or?
AUDIO:GROUP:1ST	1, 2, 3, 4, or ?
AUDIO:GROUP:2ND	1, 2, 3, 4, or ?
AUDIO:MAP:L	1ST-1, 1ST-2, 1ST-3, 1ST-4 / 2ND-1, 2ND-2, 2ND-3, 2ND-4, or ?
AUDIO:MAP:R	1ST-1, 1ST-2, 1ST-3, 1ST-4 / 2ND-1, 2ND-2, 2ND-3, 2ND-4, or ?
AUDIO:MAP:SL	1ST-1, 1ST-2, 1ST-3, 1ST-4 / 2ND-1, 2ND-2, 2ND-3, 2ND-4, or?
AUDIO:MAP:SR	1ST-1, 1ST-2, 1ST-3, 1ST-4 / 2ND-1, 2ND-2, 2ND-3, 2ND-4, or?
AUDIO:MAP:C	1ST-1, 1ST-2, 1ST-3, 1ST-4 /

Command	Parameters
	2ND-1, 2ND-2, 2ND-3, 2ND-4, or ?
AUDIO:MAP:LFE	1ST-1, 1ST-2, 1ST-3, 1ST-4 / 2ND-1, 2ND-2, 2ND-3, 2ND-4, or ?
AUDIO:MAP:RL	1ST-1, 1ST-2, 1ST-3, 1ST-4 / 2ND-1, 2ND-2, 2ND-3, 2ND-4, or ?
AUDIO:MAP:RR	1ST-1, 1ST-2, 1ST-3, 1ST-4 / 2ND-1, 2ND-2, 2ND-3, 2ND-4, or ?
AUDIO:METER:REF	-20, -18, $-12,-9$, or ?
AUDIO:METER:RANGE	60, 90, AVERAGE, or ?
AUDIO:METER:SCALE	TYPE-A, TYPE-B, or?
AUDIO:METER:PEAKHOLD	$0.5,1.0,1.5,2.0,2.5,3.0,3.5,4.0,4.5 \text { / }$ 5.0, HOLD, or ?
AUDIO:PHONES:PHONES_OUT	ON, OFF, or?
AUDIO:PHONES:VOLUME	0 to 128, or ?
AUDIO:PHONES:L_CH	1ST-1, 1ST-2, 1ST-3, 1ST-4 / 2ND-1, 2ND-2, 2ND-3, 2ND-4, or ?
AUDIO:PHONES:R_CH	1ST-1, 1ST-2, 1ST-3, 1ST-4 / 2ND-1, 2ND-2, 2ND-3, 2ND-4, or?
MULTI:LOWER	STATUS, AUD_LVL, 5BAR, or ?
STATUS	-
MAKE	STATUS (See section 17.3, "FTP")
STATUS:LOG	-
STAUTS:LOG:LOG	START, STOP, or ?
STAUTS:LOG:CLEAR	-
STAUTS:LOG:MODE	OVER_WR, STOP, or ?
MAKE	LOG (See section 17.3, "FTP")
STATUS:DUMP	-
STATUS:DUMP:MODE	RUN, HOLD, or?
STATUS:DUMP:DISPLAY	SERIAL, COMPO, BINARY, or ?
STATUS:DUMP:EAV	-
STATUS:DUMP:SAV	-
STATUS:DUMP:LINE_NUMBER	1 to 1125 , or?
STATUS:DUMP:SAMPLE	0 to 2749, or ?
MAKE	DUMP (See section 17.3, "FTP")
STATUS:AUDIO	-
STATUS:AUDIO:CH	1ST-1, 1ST-2, 1ST-3, 1ST-4 / 2ND-1, 2ND-2, 2ND-3, 2ND-4, or ?
STATUS:EDH	-
STATUS:ANC:FORMAT:PACKET	SMPTE, ARIB, or ?
STATUS:ANC:VANC:CCAP:DISPLAY	TEXT, DUMP, or ?
STATUS:ANC:VANC:CCAP:CAP_NUMBER	1, 2, 3, or ?
STATUS:ANC:VANC:CCAP:DUMP_MODE	HEX, BINARY, or ?
STATUS:ANC:VANC:NETQ1:DISPLAY	TEXT, DUMP, or?
STATUS:ANC:VANC:NETQ1:DUMP_MODE	HEX, BINARY, or?
STATUS:ANC:VANC:NETQ2:Q1	ON, OFF, or?
STATUS:ANC:VANC:NETQ2:Q2	ON, OFF, or?
STATUS:ANC:VANC:NETQ2:Q3	ON, OFF, or?
STATUS:ANC:VANC:NETQ2:Q4	ON, OFF, or?

Command	Parameters
STATUS:ANC:VANC:NETQ2:Q5	ON, OFF, or?
STATUS:ANC:VANC:NETQ3:Q6	ON, OFF, or?
STATUS:ANC:VANC:NETQ3:Q7	ON, OFF, or?
STATUS:ANC:VANC:NETQ3:Q8	ON, OFF, or?
STATUS:ANC:VANC:NETQ3:Q9	ON, OFF, or?
STATUS:ANC:VANC:NETQ3:Q10	ON, OFF, or?
STATUS:ANC:VANC:NETQ4:Q11	ON, OFF, or?
STATUS:ANC:VANC:NETQ4:Q12	ON, OFF, or?
STATUS:ANC:VANC:NETQ4:Q13	ON, OFF, or?
STATUS:ANC:VANC:NETQ4:Q14	ON, OFF, or ?
STATUS:ANC:VANC:NETQ4:Q15	ON, OFF, or?
STATUS:ANC:VANC:NETQ5:Q16	ON, OFF, or?
STATUS:ANC:VANC:NETQ5:Q17	ON, OFF, or?
STATUS:ANC:VANC:NETQ5:Q18	ON, OFF, or?
STATUS:ANC:VANC:NETQ5:Q19	ON, OFF, or?
STATUS:ANC:VANC:NETQ5:Q20	ON, OFF, or?
STATUS:ANC:VANC:NETQ6:Q21	ON, OFF, or?
STATUS:ANC:VANC:NETQ6:Q22	ON, OFF, or?
STATUS:ANC:VANC:NETQ6:Q23	ON, OFF, or?
STATUS:ANC:VANC:NETQ6:Q24	ON, OFF, or?
STATUS:ANC:VANC:NETQ6:Q25	ON, OFF, or?
STATUS:ANC:VANC:NETQ7:Q26	ON, OFF, or?
STATUS:ANC:VANC:NETQ7:Q27	ON, OFF, or?
STATUS:ANC:VANC:NETQ7:Q28	ON, OFF, or?
STATUS:ANC:VANC:NETQ7:Q29	ON, OFF, or?
STATUS:ANC:VANC:NETQ7:Q30	ON, OFF, or?
STATUS:ANC:VANC:NETQ8:Q31	ON, OFF, or?
STATUS:ANC:VANC:NETQ8:Q32	ON, OFF, or?
STATUS:ERROR:REMOTE_ERR	OFF, POSITIVE, NEGATIVE, or?
STATUS:ERROR:RATE	V_RATE, 1SEC, or ?
STATUS:ERROR:DETECT:TRS	ON, OFF, or?
STATUS:ERROR:DETECT:LINE	ON, OFF, or?
STATUS:ERROR:DETECT:CRC	ON, OFF, or?
STATUS:ERROR:DETECT:EDH	ON, OFF, or?
STATUS:ERROR:DETECT:PARITY	ON, OFF, or?
STATUS:ERROR:DETECT:CHECKSUM	ON, OFF, or?
STATUS:ERROR:DETECT:GAMUT	ON, OFF, or?
STATUS:ERROR:DETECT:C.GAMUT	ON, OFF, or?
STATUS:ERROR:DETECT:BCH	ON, OFF, or?
STATUS:ERROR:DETECT:AUDIO_CRC	ON, OFF, or ?
STATUS:ERROR:LEVEL:GAMUT_FILTER_HD	1M, 2.8M, OFF, or?
STATUS:ERROR:LEVEL:GAMUT_FILTER_SD	1M, OFF, or ?
STATUS:ERROR:LEVEL:GAMUT:UNIT	\%, mV, or?
STATUS:ERROR:LEVEL:GAMUT:UPPER	90.8 to 109.4 , or ? (when UNIT is \%) 635.6 to 765.8 , or ? (when UNIT is mV)
STATUS:ERROR:LEVEL:GAMUT:LOWER	-7.2 to 6.1 , or ? (when UNIT is \%) -50.4 to 42.7 , or ? (when UNIT is mV)
STATUS:ERROR:LEVEL:C.GAMUT:UPPER	90.0 to 135.0, or ? (when UNIT is \%)

Command	Parameters
	630.0 to 963.9 , or ? (when UNIT is mV)
STATUS:ERROR:LEVEL:C.GAMUT:LOWER	-40.0 to -20.0 , or ? (when UNIT is \%) -285.6 to -140.0 , or ? (when UNIT is mV)
STATUS:ERROR:DISPLAY	REFRESH, HOLD, or ?
STATUS:RESET	-
VIEW_FINDER	-
VIEW_FINDER:CHROMA	50 to 150, or?
VIEW_FINDER:APERTURE	0 to 200, or ?
VIEW_FINDER:BRIGHT	-50 to 50, or?
VIEW_FINDER:CONTRAST	50 to 200, or?
CAPTURE	-
CAPTURE:HOLD	-
CAPTURE:DISPLAY	REAL, HOLD, BOTH, or ?
CAPTURE:TYPE_SELECT	BMP\&BSX, BMP, BSX, or?
SYSTEM:FORMAT:MODE	AUTO, MANUAL, or?
FORMAT	```1080I/60, 1080I/59.94, 1080I/50, 1080P/30 / 1080P/29.97, 1080P/25, 1080P/24, 1080P/23.98 / 1080PSF/30, 1080PSF/29.97, 1080PSF/25, 1080PSF/24 / 1080PSF/23.98, 720P/60, 720P/59.94, 720P/50 / 720P/30, 720P/29.97, 720P/25, 720P/24, 720P/23.98 / 525I/59.94, 625I/50, or ?```
SYSTEM:FORMAT:LINK	SINGLE, DUAL-A, or?
SYSTEM:FORMAT:COMPOSIT_FORMAT	AUTO, NTSC, PAL, or ?
SYSTEM:COLOR	3200, 6500, 9300, THROUGH, or ?
SYSTEM:DISPLAY:INFO:FORMAT	ON, OFF, or ?
SYSTEM:DISPLAY:INFO:DATE	Y/M/D, M/D/Y, D/M/Y, OFF, or ?
SYSTEM:DISPLAY:INFO:TIME	REAL, TIMECODE, OFF, or ?
SYSTEM:DISPLAY:INFO:COLOR	ON, OFF, or?
SYSTEM:DISPLAY:INFO:TIMECODE	VITC, LTC, D-VITC, or ?
SYSTEM:DISPLAY:BACKLIGHT	HIGH, LOW, or?
SYSTEM:DISPLAY:AUTO_OFF	OFF, 5, 30, 60, or ?
SYSTEM:DISPLAY:BATTERY	IDX, ANTON, OTHERS, OFF, or ?
SYSTEM:DISPLAY:LIGHT	AUTO, ON, or ?
SYSTEM:DATE	2000 to 2200,1 to 12,1 to 31,0 to 23,0 to 59,0 to 59, or ? (Enter the year, month, day, hour, minute, and second, in that order, separated by commas.)
SYSTEM:INIT	-
RECALL	1 to 30

17.3 FTP

You can use the Ethernet connector on the rear panel to perform file transfer operations such as dumping data from the LV 5330 to a PC.

17.3.1 Procedure

1 Configure the LV 5330 Ethernet settings, and connect an Ethernet cable.
For more detailed instructions, see steps 1 through 3 in section 17.2.1, "Procedure."
2 Start FTP.
After you start FTP, the following display appears.
For information on how to start FTP, see your PC user's manual.

User:

3 Enter the user name, and press Enter.
The user name is LV5330. Be sure to use capital letters.
You cannot change the user name.

```
User: LV5330
```

4 Enter the password, and press Enter.
The password is LV5330. Be sure to use capital letters.
You cannot change the password.

```
Password: ******
```

5 Enter commands.
After you enter the password, the following command prompt appears.
Enter commands while referring to section 17.3.2, "How to Enter Commands," and section 17.3.3, "FTP Commands."

```
ftp>
```


17.3.2 How to Enter Commands

To transfer files through FTP, you must run a MAKE or CAPTURE command through TELNET before you execute FTP commands.
The FTP command format is explained below. Commands can be entered using uppercase or lowercase letters.

[^2]Examples of how to enter commands are shown below.

- Transferring a data dump

1. Use the following TELNET command to save a data dump in the LV 5330 internal memory.

LV5330> MAKE DUMP
2. Use the following FTP command to transfer the data dump to "DUMP.TXT" on the D drive.
ftp> GET DUMP.TXT D:IDUMP.TXT

17.3.3 FTP Commands

The TELNET MAKE/CAPTURE commands and the FTP commands are listed in the tables below.

Table 17-3 MAKE/CAPTURE commands

Command	Parameters	Explanation
MAKE	STATUS	Saves the top level of the status display in the internal memory.
	LOG	Saves the event log in the internal memory.
	DUMP	Saves a data dump in the internal memory.
CAPTURE	-	Saves screen capture data in the internal memory.

Table 17-4 FTP commands

Command	Parameter 1	Parameter 2	Explanation
GET	STATUS.TXT	Directory name/file name.txt	The top level of the status display is transferred as a text file.
	LOG.TXT	Directory name/file name.txt	The event log is transferred as a text file.
	DUMP.TXT	Directory name/file name.txt	A data dump is transferred as a text file.
	CAPTURE.BMP	Directory name/file name.bmp	Screen capture data is transferred as a bitmap file.

17.4 SNMP

By using SNMP (Simple Network Management Protocol), you can control an LV 5330 from SNMP managers. Additionally, you can also notify the SNMP managers of SDI signal errors that the LV 5330 generates.

17.4.1 Procedure

1. Configure the LV 5330 Ethernet settings, and connect an Ethernet cable.

See steps 1 through 3 in section 17.2.1, "Procedure" and also section 5.4.3, "Setting the SNMP Mode."
2. Start the SNMP managers. (*1)

To control the LV 5330 over SNMP, you need an SNMP manager (not included).
3. Check that the SNMP managers can perform GET and SET operations.

For details on how to use the SNMP managers, see their instruction manuals.
4. Set the following MIB items to the SNMP managers' IP addresses.

Perform the SET operation from the SNMP managers.
1.3.6.1.4.1.leader(20111).Iv5330(15).Iv5330ST1(1).I15trapTBL(14).I15trapManagerlp(2). 0
5. Restart the LV 5330.
6. When the LV 5330 starts, it transmits the standard TRAP "coldStart(0)." Check that this is received by the SNMP managers.
*1 SNMP Version
Community Names
SNMPv1
Read community: LDRUser
Write community: LDRAdm TRAP community: LDRUser
SMI Definitions IMPORTS
MODULE-IDENTITY, OBJECT-TYPE, NOTIFICATION-TYPE, enterprises FROM SNMPv2-SMI
DisplayString
FROM SNMPv2-TC
OBJECT-GROUP, MODULE-COMPLIANCE FROM SNMPv2-CONF;

17.4.2 MIB

This section explains the MIB (Management Information Base) that the LV 5330 uses. In the tables that follow, "ACCESS" has the following meanings:

ACCESS	Description
R/O	Information that can only be retrieved from the SNMP managers.
R/W	Information that can be retrieved and set from the SNMP managers.
R/WO	Information that can be retrieved and set from the SNMP managers. (However, the retrieved data consists of meaningless fixed values.)

17.4.3 Standard MIB

The LV 5330 uses the following standard MIBs:

- RFC1213 (MIB-II)
- RFC1354 (IP Forwarding Table MIB)

Note that in this version, there are objects that are not implemented.
In the tables that follow, "SUPPORT" has the following meanings:

SUPPORT	Description
\circ	Supports the MIB object as defined by the standard.
$\boldsymbol{\Delta}$	Reading and writing are possible according to the standard, but the LV 5330 only supports reading.
\times	Not supported.

- system group

MIB	OID	SYNTAX	ACCESS	SUPPORT
sysDescr	system.1	DisplayString	R/O	0
sysObjectID	system.2	ObjectID	R/O	0
sysUpTime	system.3	TimeTicks	R/O	0
sysContact (*1)	system.4	DisplayString	R/W	\circ
sysName (*1)	system.5	DisplayString	R/W	\circ
sysLocation (*1)	system.6	DisplayString	R/W	\circ
sysServices	system.7	INTEGER	R/O	\circ

*1 Set using up to 40 bytes.

- interface group

MIB	OID	SYNTAX	ACCESS	SUPPORT
ifNumber	interfaces. 1	INTEGER	R/O	\bigcirc
ifTable	interfaces. 2	Aggregate	-	\bigcirc
ifEntry	ifTable. 1	Aggregate	-	\bigcirc
iflndex	ifEntry. 1	INTEGER	R/O	\bigcirc
ifDescr	ifEntry. 2	DisplayString	R/O	\bigcirc
ifType	ifEntry. 3	INTEGER	R/O	\bigcirc
ifMtu	ifEntry. 4	INTEGER	R/O	\bigcirc
ifSpeed	ifEntry. 5	Gauge	R/O	\bigcirc
ifPhysAddress	ifEntry. 6	OctetString	R/O	\bigcirc
ifAdminStatus	ifEntry. 7	INTEGER	R/O	\triangle
ifOperStatus	ifEntry. 8	INTEGER	R/O	A
ifLastChange	ifEntry. 9	TimeTicks	R/O	\bigcirc
iflnOctets	ifEntry. 10	Counter	R/O	\bigcirc
iflnUcastPkts	ifEntry. 11	Counter	R/O	\bigcirc
iflnNUcastPkts	ifEntry. 12	Counter	R/O	\bigcirc
iflnDiscards	ifEntry. 13	Counter	R/O	\bigcirc
iflnErrors	ifEntry. 14	Counter	R/O	\bigcirc
ifInUnknownProtos	ifEntry. 15	Counter	R/O	\bigcirc
ifOutOctets	ifEntry. 16	Counter	R/O	\bigcirc

MIB	OID	SYNTAX	ACCESS	SUPPORT
ifOutUcastPkts	ifEntry.17	Counter	R/O	\circ
ifOutNUcastPkts	ifEntry.18	Counter	R/O	\circ
ifOutDiscards	ifEntry.19	Counter	R/O	\circ
ifOutErrors	ifEntry.20	Counter	R/O	\circ
ifOutQLen	ifEntry.21	Gauge	R/O	\circ
ifSpecific	ifEntry.22	ObjectID	R/O	\circ

- ip group

MIB	OID	SYNTAX	ACCESS	SUPPORT
ipForwarding	ip. 1	INTEGER	R/O	-
ipDefaultTTL	ip. 2	INTEGER	R/O	\bigcirc
ipInReceives	ip. 3	Counter	R/O	\bigcirc
ipInHdrErrors	ip. 4	Counter	R/O	-
ipInAddrErrors	ip. 5	Counter	R/O	-
ipForwDatagrams	ip. 6	Counter	R/O	\bigcirc
ipInUnknownProtos	ip. 7	Counter	R/O	\bigcirc
ipInDiscards	ip. 8	Counter	R/O	\bigcirc
ipInDelivers	ip. 9	Counter	R/O	\bigcirc
ipOutRequests	ip. 10	Counter	R/O	\bigcirc
ipOutDiscards	ip. 11	Counter	R/O	-
ipOutNoRoutes	ip. 12	Counter	R/O	\bigcirc
ipReasmTimeout	ip. 13	INTEGER	R/O	\bigcirc
ipReasmReqds	ip. 14	Counter	R/O	-
ipReasmOKs	ip. 15	Counter	R/O	\bigcirc
ipReasmFails	ip. 16	Counter	R/O	\bigcirc
ipFragOKs	ip. 17	Counter	R/O	\bigcirc
ipFragFails	ip. 18	Counter	R/O	-
ipFragCreates	ip. 19	Counter	R/O	-
ipAddrTable	ip. 20	Aggregate	-	\bigcirc
ipAddrEntry	ipAddrTable. 1	Aggregate	-	\bigcirc
ipAdEntAddr	ipAddrEntry. 1	IpAddress	R/O	\bigcirc
ipAdEntIfIndex	ipAddrEntry. 2	INTEGER	R/O	\bigcirc
ipAdEntNetMask	ipAddrEntry. 3	IpAddress	R/O	-
ipAdEntBcastAddr	ipAddrEntry. 4	INTEGER	R/O	-
ipAdEntReasmMaxSize	ipAddrEntry. 5	INTEGER	R/O	\bigcirc
ipNetToMediaTable	ip. 22	Aggregate	-	\bigcirc
ipNetToMediaEntry	ipNetToMediaTable. 1	Aggregate	-	\bigcirc
ipNetToMedialfIndex	ipNetToMediaEntry. 1	INTEGER	R/O	\triangle
ipNetToMediaPhysAddress	ipNetToMediaEntry. 2	OctetString	R/O	\triangle
ipNetToMediaNetAddress	ipNetToMediaEntry. 3	IpAddress	R/O	Δ
ipNetToMediaType	ipNetToMediaEntry. 4	INTEGER	R/O	\triangle
ipRoutingDiscards	ip. 23	Counter	R/O	\bigcirc
ipForward	ip. 24	Aggregate	-	\bigcirc
ipForwardNumber	ipForward . 1	Gauge	R/O	\bigcirc
ipForwardTable	ipForward . 2	Aggregate	-	-

MIB	OID	SYNTAX	ACCESS	SUPPORT
ipForwardDest	ipForwardTable.1	IpAddress	R/O	\circ
ipForwardMask	ipForwardTable.1	IpAddress	R/O	\circ
ipForwardPolicy	ipForwardTable.1	INTEGER	R/O	\times
ipForwardNextHop	ipForwardTable.1	IpAddress	R/O	\circ
ipForwardIflndex	ipForwardTable.1	INTEGER	R/O	\circ
ipForwardType	ipForwardTable.1	INTEGER	R/O	\times
ipForwardProto	ipForwardTable.1	INTEGER	R/O	\times
ipForwardAge	ipForwardTable.1	INTEGER	R/O	\times
ipForwardlnfo	ipForwardTable.1	ObjectID	R/O	\times
ipForwardNextHopAS	ipForwardTable.1	INTEGER	R/O	\times
ipForwardMetric1	ipForwardTable.1	INTEGER	R/O	\times
ipForwardMetric2	ipForwardTable.1	INTEGER	R/O	\times
ipForwardMetric3	ipForwardTable.1	INTEGER	R/O	\times
ipForwardMetric4	ipForwardTable.1	INTEGER	R/O	\times
ipForwardMetric5	ipForwardTable.1	INTEGER	R/O	\times

- icmp group

MIB	OID	SYNTAX	ACCESS	SUPPORT
icmplnMsgs	icmp. 1	Counter	R/O	\bigcirc
icmplnErrors	icmp. 2	Counter	R/O	\bigcirc
icmplnDestUnreachs	icmp. 3	Counter	R/O	\bigcirc
icmplnTimeExcds	icmp. 4	Counter	R/O	-
icmpInParmProbs	icmp. 5	Counter	R/O	\bigcirc
icmpInSrcQuenchs	icmp. 6	Counter	R/O	\bigcirc
icmpInRedirects	icmp. 7	Counter	R/O	\bigcirc
icmplnEchos	icmp. 8	Counter	R/O	\bigcirc
icmplnEchoReps	icmp. 9	Counter	R/O	-
icmplnTimestamps	icmp. 10	Counter	R/O	-
icmplnTimestampReps	icmp. 11	Counter	R/O	\bigcirc
icmplnAddrMasks	icmp. 12	Counter	R/O	-
icmplnAddrMaskReps	icmp. 13	Counter	R/O	-
icmpOutMsgs	icmp. 14	Counter	R/O	\bigcirc
icmpOutErrors	icmp. 15	Counter	R/O	-
icmpOutDestUnreachs	icmp. 16	Counter	R/O	-
icmpOutTimeExcds	icmp. 17	Counter	R/O	\bigcirc
icmpOutParmProbs	icmp. 18	Counter	R/O	\bigcirc
icmpOutSrcQuenchs	icmp. 19	Counter	R/O	\bigcirc
icmpOutRedirects	icmp. 20	Counter	R/O	-
icmpOutEchos	icmp. 21	Counter	R/O	-
icmpOutEchoReps	icmp. 22	Counter	R/O	\bigcirc
icmpOutTimestamps	icmp. 23	Counter	R/O	\bigcirc
icmpOutTimestampReps	icmp. 24	Counter	R/O	\bigcirc
icmpOutAddrMasks	icmp. 25	Counter	R/O	\bigcirc
icmpOutAddrMaskReps	icmp. 26	Counter	R/O	-

- tcp group

MIB	OID	SYNTAX	ACCESS	SUPPORT
tcpRtoAlgorithm	tcp. 1	INTEGER	R/O	\bigcirc
tcpRtoMin	tcp. 2	INTEGER	R/O	\bigcirc
tcpRtoMax	tcp. 3	INTEGER	R/O	\bigcirc
tcpMaxConn	tcp. 4	INTEGER	R/O	\bigcirc
tcpActiveOpens	tcp. 5	Counter	R/O	\bigcirc
tcpPassiveOpens	tcp. 6	Counter	R/O	\bigcirc
tcpAttemptFails	tcp. 7	Counter	R/O	\bigcirc
tcpEstabResets	tcp. 8	Counter	R/O	\bigcirc
tcpCurrEstab	tcp. 9	Gauge	R/O	-
tcplnSegs	tcp. 10	Counter	R/O	\bigcirc
tcpOutSegs	tcp. 11	Counter	R/O	\bigcirc
tcpRetransSegs	tcp. 12	Counter	R/O	\bigcirc
tcpConnTable	tcp. 13	Aggregate	-	\bigcirc
tcpConnEntry	tcpConnTable. 1	Aggregate	-	\bigcirc
tcpConnState	tcpConnEntry. 1	INTEGER	R/O	\triangle
tcpConnLocalAddress	tcpConnEntry. 2	IpAddress	R/O	\bigcirc
tcpConnLocalPort	tcpConnEntry. 3	INTEGER	R/O	\bigcirc
tcpConnRemAddress	tcpConnEntry. 4	IpAddress	R/O	-
tcpConnRemPort	tcpConnEntry. 5	INTEGER	R/O	\bigcirc
tcplnErrs	tcp. 14	Counter	R/O	\bigcirc
tcpOutRsts	tcp. 15	Counter	R/O	-

- udp group

MIB	OID	SYNTAX	ACCESS	SUPPORT
udpInDatagrams	udp.1	Counter	R/O	\circ
udpNoPorts	udp.2	Counter	R/O	\circ
udpInErrors	udp.3	Counter	R/O	\circ
udpOutDatagrams	udp.4	Counter	R/O	\circ
udpTable	udp.5	Aggregate	-	\circ
udpEntry	udpTable.1	Aggregate	-	\circ
udpLocalAddress	udpEntry.1	IpAddress	R/O	\circ
udpLocalPort	udpEntry.2	INTEGER	R/O	\circ

- snmp group

MIB	OID	SYNTAX	ACCESS	SUPPORT
snmplnPkts	snmp. 1	Counter	R/O	\bigcirc
snmpOutPkts	snmp. 2	Counter	R/O	-
snmpInBadVersions	snmp. 3	Counter	R/O	\bigcirc
snmpInBadCommunityNames	snmp. 4	Counter	R/O	-
snmpInBadCommunityUses	snmp. 5	Counter	R/O	-
snmpInASNParseErrs	snmp. 6	Counter	R/O	\bigcirc
snmplnTooBigs	snmp. 8	Counter	R/O	\bigcirc
snmplnNoSuchNames	snmp. 9	Counter	R/O	\bigcirc
snmpInBadValues	snmp. 10	Counter	R/O	\bigcirc
snmpInReadOnlys	snmp. 11	Counter	R/O	\bigcirc
snmpInGenErrs	snmp. 12	Counter	R/O	\bigcirc
snmpInTotalReqVars	snmp. 13	Counter	R/O	\bigcirc
snmpInTotalSetVars	snmp. 14	Counter	R/O	\bigcirc
snmpInGetRequests	snmp. 15	Counter	R/O	\bigcirc
snmpInGetNexts	snmp. 16	Counter	R/O	\bigcirc
snmpInSetRequests	snmp. 17	Counter	R/O	\bigcirc
snmpInGetResponses	snmp. 18	Counter	R/O	\bigcirc
snmplnTraps	snmp. 19	Counter	R/O	\bigcirc
snmpOutTooBigs	snmp. 20	Counter	R/O	\bigcirc
snmpOutNoSuchNames	snmp. 21	Counter	R/O	\bigcirc
snmpOutBadValues	snmp. 22	Counter	R/O	\bigcirc
snmpOutGenErrs	snmp. 24	Counter	R/O	\bigcirc
snmpOutGetRequests	snmp. 25	Counter	R/O	\bigcirc
snmpOutGetNexts	snmp. 26	Counter	R/O	\bigcirc
snmpOutSetRequests	snmp. 27	Counter	R/O	\bigcirc
snmpOutGetResponses	snmp. 28	Counter	R/O	\bigcirc
snmpOutTraps	snmp. 29	Counter	R/O	\bigcirc
snmpEnableAuthenTraps	snmp. 30	IpAddress	R/W	\bigcirc

17.4.4 Enterprise MIB

- MIB File

Download the file on the LV 5330 using FTP.
The file name is "Iv5330.my".

- Enterprise Number

The Enterprise Number of LEADER ELECTRONICS CORP. is 20111. iso(1).org(3).dod(6).internet(1).private(4).enterprises(1).leader(20111)

- Enterprise MIB Structure

Iv5330	OBJECT IDENTIFIER ::= \{ leader 15$\}$
Iv5330ST1	OBJECT IDENTIFIER $::=\{$ lv5330 1$\}$
I15panelTBL	OBJECT IDENTIFIER ::= \{ Iv5330ST1 1$\}$
I15wfmTBL	OBJECT IDENTIFIER ::= \{ Iv5330ST1 2 \}
115 vectorTBL	OBJECT IDENTIFIER ::= \{ Iv5330ST1 3 \}
115 pictureTBL	OBJECT IDENTIFIER ::= \{ Iv5330ST1 4 \}
I15cineliteTBL	OBJECT IDENTIFIER ::= \{ Iv5330ST1 5$\}$
115cinezoneTBL	OBJECT IDENTIFIER ::= \{ Iv5330ST1 6 \}
I15viewfinderTBL	OBJECT IDENTIFIER ::= \{ Iv5330ST1 7 \}
I15audioTBL	OBJECT IDENTIFIER ::= \{ Iv5330ST1 8 \}
I15multiTBL	OBJECT IDENTIFIER ::= \{ Iv5330ST1 9 \}
115statusTBL	OBJECT IDENTIFIER ::= \{ Iv5330ST1 10 \}
115captureTBL	OBJECT IDENTIFIER ::= \{ Iv5330ST1 11$\}$
I15filesTBL	OBJECT IDENTIFIER ::= \{ Iv5330ST1 12$\}$
I15systemTBL	OBJECT IDENTIFIER ::= \{ Iv5330ST1 13$\}$
I15trapTBL	OBJECT IDENTIFIER ::= \{ Iv5330ST1 14$\}$

- I15paneITBL(1) group

MIB	OID	SYNTAX	ACCESS	VALUE/RANGE
I15pISDI	I15panelTBL. 2	INTEGER	R/W	$\begin{aligned} & 0=a \\ & 1=b \end{aligned}$
115pIReference	I15panelTBL. 3	INTEGER	R/W	$\begin{aligned} & 0=\text { int } \\ & 1=\mathrm{ext} \end{aligned}$
I15pIDisplay	I15paneITBL. 6	INTEGER	R/W	$0=w f m$ 1=vector $3=$ picture 4=multi 5=status 6=capture 7=system 8=memory 10=recall 12=viewfinder 13=cinelite 14=cinezone

- I15wfmTBL(2) group

MIB	OID	SYNTAX	ACCESS	VALUE/RANGE
115wfmIntenTBL	I15wfmTBL. 1	Aggregate	-	-
I15wfmIntenWfm	I15wfmIntenTBL. 1	INTEGER	R/W	-128-127
115wfmIntenSCALE	I15wfmIntenTBL. 2	INTEGER	R/W	-8-7
I15wfmGainTBL	115wfmTBL. 2	Aggregate	-	-
I15wfmGainVAR	I15wfmGainTBL. 1	INTEGER	R/W	$\begin{aligned} & 0=\mathrm{cal} \\ & 1=\mathrm{var} \end{aligned}$
I15wfmGainMAG	I15wfmGainTBL. 2	INTEGER	R/W	$\begin{aligned} & 0=x 1 \\ & 1=x 5 \end{aligned}$
I15wfmGainFILTER	I15wfmGainTBL. 3	INTEGER	R/W	$\begin{aligned} & 0=\text { flat } \\ & 1=\text { lowPass } \\ & 2=\text { luma } \end{aligned}$
I15wfmGainCFILTER	I15wfmGainTBL. 4	INTEGER	R/W	$\begin{aligned} & \text { 0=flat } \\ & \text { 1=flatLum } \end{aligned}$
I15wfmSweepTBL	115wfmTBL. 3	Aggregate	-	-
I15wfmSweepSweep	I15wfmSweepTBL. 1	INTEGER	R/W	$\begin{aligned} & 0=\mathrm{h} \\ & 1=\mathrm{v} \end{aligned}$
I15wfmSweepHSweep	I15wfmSweepTBL. 2	INTEGER	R/W	$\begin{aligned} & 0=s p 1 \mathrm{H} \\ & 1=\mathrm{sp} 2 \mathrm{H} \end{aligned}$
I15wfmSweepVSweep	I15wfmSweepTBL. 3	INTEGER	R/W	$\begin{aligned} & 0=s p 1 \mathrm{~V} \\ & 1=\mathrm{sp} 2 \mathrm{~V} \end{aligned}$
I15wfmSweepField	I15wfmSweepTBL. 4	INTEGER	R/W	$\begin{aligned} & 0=\text { field1 } \\ & 1=\text { field2 } \\ & 2=\text { frame } \end{aligned}$
I15wfmSweepHMAG	115wfmSweepTBL. 5	INTEGER	R/W	$\begin{aligned} & 0=x 1 \\ & 1=x 10 \end{aligned}$

MIB	OID	SYNTAX	ACCESS	VALUE/RANGE
			$2=x 20$ $3=$ active 4=blank	
I15wfmSweepVMAG	I15wfmSweepTBL.6	INTEGER	R/W	$0=x 1$ $1=x 20$ $2=x 40$
I15wfmLineSelectTBL	I15wfmTBL.4	Aggregate	-	
I15wfmLineSelect	I15wfmLineSelectTBL.1	INTEGER	R/W	$0=$ off $1=$ on
I15wfmLineSelectNumber	I15wfmLineSelectTBL.2	INTEGER	R/W	$1-1125$
I15wfmLineSelectField	I15wfmLineSelectTBL.3	INTEGER	R/W	$0=$ field1 $1=$ field2
$2=$ frame				

MIB	OID	SYNTAX	ACCESS	VALUE/RANGE
I15wfmMode	I15wfmTBL.10			$1=$ pass INTEGER $2=$ parade
I15wfmDisplayTBL	I15wfmTBL.11	Aggregate	-	
I15wfmDisplayCH1	I15wfmDisplayTBL.1	INTEGER	R/W	$0=$ off $1=$ on
I15wfmDisplayCH2	I15wfmDisplayTBL.2	INTEGER	R/W	$0=$ off $1=$ on
I15wfmDisplayCH3	I15wfmDisplayTBL.3	INTEGER	R/W	$0=$ off $1=$ on

- I15vectorTBL(3) group

MIB	OID	SYNTAX	ACCESS	VALUE/RANGE
115vecIntenTBL	I15vectorTBL. 1	Aggregate	-	-
115 vec IntenVector	I15vecIntenTBL. 1	INTEGER	R/W	-128-127
115 vec IntenScale	I15vecIntenTBL. 2	INTEGER	R/W	-8-7
I15vecGainTBL	I15vectorTBL. 2	INTEGER	R/W	-
I15vecGainVar	I15vecGainTBL. 1	INTEGER	R/W	$\begin{aligned} & 0=\mathrm{cal} \\ & 1=\mathrm{val} \end{aligned}$
I15vecGainMag	I15vecGainTBL. 2	INTEGER	R/W	$\begin{aligned} & 0=x 1 \\ & 1=x 5 \\ & 2=\text { iqmag } \end{aligned}$
I15vecLineSelectTBL	115 vectorTBL .3	Aggregate	-	-
115 vec LineSelect	I15vecLineSelectTBL. 1	INTEGER	R/W	$\begin{aligned} & 0=\text { off } \\ & 1=o n \end{aligned}$
115vecLineSelectNumber	I15vecLineSelectTBL. 2	INTEGER	R/W	1-1125
115 vec LineSelectField	I15vecLineSelectTBL. 3	INTEGER	R/W	$\begin{aligned} & \text { 0=field1 } \\ & \text { 1=field2 } \\ & \text { 2=frame } \end{aligned}$
I15vecColorSystemTBL	I15vectorTBL. 4	Aggregate	-	-
115 vec ColorSystemBar	115vecColorSystemTBL. 1	INTEGER	R/W	$\begin{aligned} & 0=\text { p100Per } \\ & 1=\text { p75Per } \end{aligned}$
115vecColorSystemMatrix	115vecColorSystemTBL. 2	INTEGER	R/W	0=componen 1=composite
115vecColorSystemSetup	115vecColorSystemTBL. 3	INTEGER	R/W	$\begin{aligned} & 0=\text { p0Per } \\ & \text { 1=p7p5Per } \end{aligned}$
115 vec ScaleTBL	I15vectorTBL. 5	Aggregate	-	-
115 vec ScaleColor	I15vecScaleTBL. 1	INTEGER	R/W	$0=$ white 1=yellow 2=cyan 3=green 4=magenta $5=$ red 6=blue

MIB	OID	SYNTAX	ACCESS	VALUE/RANGE
I15vecScaleIQAXIS	I15vecScaleTBL. 2	INTEGER	R/W	$\begin{aligned} & 0=\text { off } \\ & 1=\text { on } \end{aligned}$
I15vecScaleMarker	I15vecScaleTBL. 3	INTEGER	R/W	$\begin{aligned} & 0=o f f \\ & 1=o n \end{aligned}$
I15vecSelect	I15vectorTBL. 6	INTEGER	R/W	$\begin{aligned} & 0=\text { vector } \\ & 1=\text { bar } \end{aligned}$
115vecExtPhaseTBL	115vectorTBL. 7	Aggregate	-	-
I15vecExtPhaseSdiNumber	I15vecExtPhaseTBL. 1	INTEGER	R/W	$\begin{aligned} & 0=n 1 \\ & 1=n 2 \\ & 2=n 3 \\ & 3=n 4 \\ & 4=n 5 \\ & 5=n 6 \\ & 6=n 7 \\ & 7=n 8 \end{aligned}$
115vecExtPhaseSdiMemory	I15vecExtPhaseTBL. 2	INTEGER	R/W	0=ExtPhaseSdiMemory
I15vecExtPhaseMemoryClear	I15vecExtPhaseTBL. 3	INTEGER	R/W	0=ExtPhaseMemoryClear
115vecExtPhaseUserRefSet	I15vecExtPhaseTBL. 4	INTEGER	R/W	$0=$ ExtPhaseUserRefSet
I15vecExtPhaseRefDefault	I15vecExtPhaseTBL. 5	INTEGER	R/W	$0=$ ExtPhaseRefDefault

- I15pictureTBL(4) group

MIB	OID	SYNTAX	ACCESS	VALUE/RANGE
115picMarkerTBL	I15pictureTBL. 1	Aggregate	-	-
115picMarker43	I15picMarkerTBL. 1	INTEGER	R/W	$\begin{aligned} & 0=\text { hd } 235-1 \\ & 1=\text { hd } 185-1 \\ & 2=\text { hd } 166-1 \\ & 3=\text { hd } 14-9 \\ & 4=\text { hd } 13-9 \\ & 5=\text { hd4-3 } \\ & 6=\text { off } \end{aligned}$
I15picMarker169	I15picMarkerTBL. 2	INTEGER	R/W	$\begin{aligned} & 0=s d 235-1 \\ & 1=\text { sd } 185-1 \\ & 2=\text { sd166-1 } \\ & 3=\text { sd } 16-9 \\ & 4=\operatorname{sd} 14-9 \\ & 5=\text { sd13-9 } \\ & 6=\text { off } \end{aligned}$
115picMarkerSafeAction	115picMarkerTBL. 3	INTEGER	R/W	$\begin{aligned} & 0=\text { sa95 } \\ & 1=\text { sa93 } \\ & 2=\text { sa90 } \\ & 3=\text { off } \end{aligned}$
115picMarkerSafeTitle	115picMarkerTBL. 4	INTEGER	R/W	$\begin{aligned} & 0=\mathrm{st88} \\ & 1=\mathrm{st80} \\ & 2=\mathrm{off} \end{aligned}$
I15picMarkerCenter	115picMarkerTBL. 5	INTEGER	R/W	0=off

MIB	OID	SYNTAX	ACCESS	VALUE/RANGE
				1=on
I15picMarkerShadow	115picMarkerTBL. 6	INTEGER	R/W	$\begin{aligned} & 0=\text { off } \\ & 1=o n \end{aligned}$
I15picLineSelectTBLI	5 pictureTBL. 2	Aggregate	-	-
115picLineSelect	115picLineSelectTBL. 1	INTEGER	R/W	$\begin{aligned} & 0=\text { off } \\ & 1=\text { on } \end{aligned}$
115 picLineSelectNumber	\|15picLineSelectTBL. 2	INTEGER	R/W	1-1125
115picLineSelectField	115picLineSelectTBL. 3	INTEGER	R/W	$\begin{aligned} & \text { 0=field1 } \\ & \text { 1=field2 } \\ & \text { 2=frame } \end{aligned}$
115picEtcTBL	115pictureTBL. 3	Aggregate	-	-
115 picCcTBL	I15picEtcTBL. 1	Aggregate	-	-
115 picCcSystem	I15picCcTBL. 1	INTEGER	R/W	$\begin{aligned} & 0=\text { eia608-708 } \\ & 1=\text { eia608-608 } \\ & \text { 2=vbi } \end{aligned}$
115 picCcCc	115 picCcTBL. 2	INTEGER	R/W	$0=$ off $1=\mathrm{cc} 1$ 2=cc2 3=cc3 $4=c c 4$ 5=text1 6=text2 7=text3 8=text4
115picGamutErr	115picEtcTBL. 4	INTEGER	R/W	$\begin{aligned} & 0=\text { dispon } \\ & 1=\text { dispoff } \end{aligned}$
I15picDisplayTBL	I15pictureTBL. 4	Aggregate	-	-
115picSize	I15picDisplayTBL. 1	INTEGER	R/W	$\begin{aligned} & 0=\text { fit } \\ & 1=x 1 \\ & 2=x 2 \\ & 3=\text { full } \end{aligned}$
115picRgb	I15picDisplayTBL. 2	INTEGER	R/W	$0=\mathrm{rgb}$ $1=\mathrm{mono}$ $2=\mathrm{rg}$ $3=\mathrm{rb}$ $4=\mathrm{gb}$ $5=\mathrm{r}$ $6=\mathrm{g}$ $7=\mathrm{b}$
115 picSqueeze	I15picDisplayTBL. 3	INTEGER	R/W	$\begin{aligned} & 0=\text { off } \\ & 1=o n \end{aligned}$
115 piclpConv	115picDisplayTBL. 4	INTEGER	R/W	$\begin{aligned} & 0=\text { off } \\ & 1=o n \end{aligned}$
115picChroma	115pictureTBL. 5	INTEGER	R/W	0-150
I15picAperture	I15pictureTBL. 6	INTEGER	R/W	0-200
I15picBright	\|15pictureTBL. 7	INTEGER	R/W	-50-50

MIB	OID	SYNTAX	ACCESS	VALUE/RANGE
I15picContrust	I15pictureTBL. 8	INTEGER	R/W	$50-200$

- I15cineliteTBL(5) group

MIB	OID	SYNTAX	ACCESS	VALUE/RANGE
115cineliteFstop	115cineliteTBL. 1	INTEGER	R/W	0=Fstop
I15cineliteDisplay	I15cineliteTBL. 2	INTEGER	R/W	$0=$ Display
115cineliteDisplayTBL	115cineliteTBL. 3	Aggregate	-	-
I15cineliteDisplayLineNumber	I15cineliteDisplayTBL. 1	INTEGER	R/W	1-1125
I15cineliteDisplaySampleNumber	I15cineliteDisplayTBL. 2	INTEGER	R/W	0-2749
I15cineliteDisplayFD	I15cineliteDisplayTBL. 3	INTEGER	R/W	$\begin{aligned} & 0=\text { line } \\ & 1=\text { sample } \end{aligned}$
I15cineliteDisplayMeasPos	I15cineliteDisplayTBL. 4	INTEGER	R/W	$\begin{aligned} & 0=p 1 \\ & 1=\text { p2 } \\ & 0=\text { p3 } \end{aligned}$
115cineliteDisplayMeasSize	I15cineliteDisplayTBL. 5	INTEGER	R/W	$\begin{aligned} & 0=s 1 \times 1 \\ & 1=s 3 \times 3 \\ & 2=s 9 \times 9 \end{aligned}$
115cineliteDisplayMeasDisp	I15cineliteDisplayTBL. 6	INTEGER	R/W	$\begin{aligned} & 0=p 1 \mathrm{p} 2 \mathrm{p} 3 \\ & 1=\mathrm{p} 1 \mathrm{p} 2 \\ & 2=\mathrm{p} 1 \mathrm{p} 3 \\ & 3=\mathrm{p} 2 \mathrm{p} 3 \\ & 4=\mathrm{p} 1 \\ & 5=\mathrm{p} 2 \\ & 6=\mathrm{p} 3 \end{aligned}$
115cineliteDisplayRGB	I15cineliteDisplayTBL. 7	INTEGER	R/W	$\begin{aligned} & 0=\text { level } \\ & 1=\text { rgb } \\ & 2=\text { rgb255 } \end{aligned}$
I15cineliteFstopRefSet	I15cineliteDisplayTBL. 8	INTEGER	R/W	0=FstopRefSet
I15cineliteGamma	115cineliteTBL. 4	INTEGER	R/W	$\begin{aligned} & 0=\text { gO45 } \\ & 1=\text { user-1 } \\ & 2=\text { user-2 } \\ & 3=\text { user-3 } \\ & 4=\text { user-A } \\ & 5=\text { user-B } \\ & 6=\text { user-C } \\ & 7=\text { user-D } \\ & 8=\text { user-E } \end{aligned}$
I15cineliteCalTBL	115cineliteTBL. 5	Aggregate	-	-
115cineliteCalTableClear	115cineliteCaITBL. 1	INTEGER	R/W	0=CalTableClear
I15cineliteCalDataClear	115cineliteCaITBL. 2	INTEGER	R/W	0=CalDataClear
I15cineliteCalSet	115cineliteCaITBL. 3	INTEGER	R/W	0=CalSet
I15cineliteCalCaIF	115cineliteCalTBL. 4	INTEGER	R/W	$\begin{aligned} & 0=f 22-0 \\ & 1=f 16-0 \\ & 2=f 11-0 \\ & 3=f 8-0 \end{aligned}$

MIB	OID	SYNTAX	ACCESS	VALUE/RANGE
				$4=f 5-6$ $5=f 4-0$ $6=f 2-8$ $7=f 2-0$
I15cineliteCal2TBL				
I15cineliteCaI2TbICIr				
I15cineliteAdvance	I15cineliteTBL.6	Aggregate	-	

- I15cinezoneTBL(6) group

MIB	OID	SYNTAX	ACCESS	VALUE/RANGE
I15cinezoneMode	I15cinezoneTBL.1	INTEGER	R/W	$0=$ zone $1=$ search
I15cinezoneZoneDisplay	I15cinezoneTBL.2	INTEGER	R/W	$0=$ linear $1=$ step
I15cinezonePerDisplay	I15cinezoneTBL.3	INTEGER	R/W	$0=$ off $1=$ on
I15cinezoneDisplay	I15cinezoneTBL.4	INTEGER	R/W	$0=$ Display
I15cinezoneUpper	I15cinezoneTBL.5	DisplayString	R/W	$-6.3-109.4$
I15cinezoneLower	I15cinezoneTBL.6	DisplayString	R/W	$-7.3-108.4$
I15cinezoneSearchLevel	I15cinezoneTBL.7	DisplayString	R/W	$-7.3-109.4$
I15cinezoneSearchRange	I15cinezoneTBL.8	DisplayString	R/W	$0.5-100.0$

- I15viewfinderTBL(7) group

MIB	OID	SYNTAX	ACCESS	VALUE/RANGE
I15viewfinderChroma	I15viewfinderTBL.1	INTEGER	R/W	$50-150$
I15viewfinderAperture	I15viewfinderTBL.2	INTEGER	R/W	$0-200$
I15viewfinderBright	I15viewfinderTBL.3	INTEGER	R/W	$-50-50$
I15viewfinderContrust	I15viewfinderTBL.4	INTEGER	R/W	$50-200$

- I15audioTBL(8) group

MIB	OID	SYNTAX	ACCESS	VALUE/RANGE
I15audMode	I15audioTBL.1	INTEGER	R/W	$\begin{array}{l}0=\text { level } \\ 1=\text { value }\end{array}$
I15audSdiTBL	I15audioTBL.2	Aggregate	-	
I15audSdi1St	I15audSdiTBL.1	INTEGER	R/W	$\begin{array}{l}0=\text { group1 } \\ 1=\text { group2 } \\ 2=\text { group3 } \\ 3=\text { group4 }\end{array}$
I15audSdi2nd	I15audSdiTBL.2	INTEGER	R/W	$\begin{array}{l}0=\text { group1 } \\ 1=\text { group2 } \\ 2=\text { group3 }\end{array}$
$3=$ group4				

MIB	OID	SYNTAX	ACCESS	VALUE/RANGE
I15audMeterTBL	I15audioTBL. 3	Aggregate	-	-
I15audMeterRef	\|15audMeterTBL. 1	INTEGER	R/W	$0=$ minus 20 dB 1=minus 18 dB $2=$ minus 12 dB 3=minus9dB
I15audMeterRange	I15audMeterTBL. 2	INTEGER	R/W	$\begin{aligned} & 0=\text { peak } 60 \mathrm{~dB} \\ & 1=\text { peak } 90 \mathrm{~dB} \\ & 2=\text { avarage } \end{aligned}$
I15audMeterScale	115audMeterTBL. 3	INTEGER	R/W	$\begin{aligned} & 0=\text { typeA } \\ & \text { 1=typeB } \end{aligned}$
I15audMeterPeakHold	I15audMeterTBL. 4	INTEGER	R/W	$\begin{aligned} & 0=\mathrm{ph} 0 \mathrm{p} 5 \\ & 1=\mathrm{ph} 1 \\ & 2=\mathrm{ph} 1 \mathrm{p} 5 \\ & 3=\mathrm{ph} 2 \\ & 4=\mathrm{ph} 2 \mathrm{p} 5 \\ & 5=\mathrm{ph} 3 \\ & 6=\mathrm{ph} 3 \mathrm{p} 5 \\ & 7=\mathrm{ph} 4 \\ & 8=\mathrm{ph} 4 \mathrm{p} 5 \\ & 9=\mathrm{ph} 5 \\ & 10=\mathrm{hold} \end{aligned}$
115audPhonesTBL	I15audioTBL. 4	Aggregate	-	-
I15audPhonesOut	I15audPhonesTBL. 1	INTEGER	R/W	$\begin{aligned} & 0=\text { off } \\ & 1=\text { on } \end{aligned}$
115audPhonesVolume	I15audPhonesTBL. 2	INTEGER	R/W	0-128
I15audPhonesL	I15audPhonesTBL. 3	INTEGER	R/W	$0=c h 1$ st1 1=ch1st2 2=ch1st3 $3=\mathrm{ch} 1 \mathrm{st} 4$ 4=ch2nd1 5=ch2nd2 6=ch2nd3 $0=$ ch2nd4
115audPhonesR	I15audPhonesTBL. 4	INTEGER	R/W	$\begin{aligned} & 0=\mathrm{ch} 1 \mathrm{st} 1 \\ & 1=\mathrm{ch} 1 \mathrm{st2} \\ & 2=\mathrm{ch} 1 \mathrm{st} 3 \\ & 3=\mathrm{ch} 1 \mathrm{st} 4 \\ & 4=\mathrm{ch} 2 \mathrm{nd} 1 \\ & 5=\mathrm{ch} 2 \mathrm{nd} 2 \\ & 6=\mathrm{ch} 2 \mathrm{nd} 3 \\ & 0=\mathrm{ch} 2 \mathrm{nd} 4 \end{aligned}$
I15audChMapTBL	I15audioTBL. 5	Aggregate	-	-
\|15audChMapL	I15audChMapTBL. 1	INTEGER	R/W	$\begin{aligned} & 0=\mathrm{ch} 1 \mathrm{st} 1 \\ & 1=\mathrm{ch} 1 \mathrm{st} 2 \\ & 2=\mathrm{ch} 1 \mathrm{st} 3 \\ & 3=\mathrm{ch} 1 \mathrm{st} 4 \end{aligned}$

MIB	OID	SYNTAX	ACCESS	VALUE/RANGE
				$\begin{aligned} & 4=\operatorname{ch} 2 n d 1 \\ & 5=\operatorname{ch} 2 n d 2 \\ & 6=\operatorname{ch} 2 n d 3 \\ & 0=\text { ch2nd4 } \end{aligned}$
115audChMapR	I15audChMapTBL. 2	INTEGER	R/W	$\begin{aligned} & 0=\operatorname{ch} 1 \mathrm{st} 1 \\ & 1=\mathrm{ch} 1 \mathrm{st} 2 \\ & 2=\mathrm{ch} 1 \mathrm{st} 3 \\ & 3=\mathrm{ch} 1 \mathrm{st} 4 \\ & 4=\mathrm{ch} 2 \mathrm{nd} 1 \\ & 5=\mathrm{ch} 2 \mathrm{nd} 2 \\ & 6=\mathrm{ch} 2 \mathrm{nd} 3 \\ & 0=\mathrm{ch} 2 \mathrm{nd} 4 \end{aligned}$
I15audChMapSL	I15audChMapTBL. 3	INTEGER	R/W	$0=c h 1$ st1 1=ch1st2 2=ch1st3 3=ch1st4 4=ch2nd1 5=ch2nd2 6=ch2nd3 $0=$ ch2nd4
I15audChMapSR	I15audChMapTBL. 4	INTEGER	R/W	$0=c h 1$ st1 1=ch1st2 2=ch1st3 3=ch1st4 4=ch2nd1 5=ch2nd2 6=ch2nd3 $0=$ ch2nd4
115audChMapC	I15audChMapTBL. 5	INTEGER	R/W	$0=$ ch1st1 1=ch1st2 2=ch1st3 3=ch1st4 4=ch2nd1 5=ch2nd2 6=ch2nd3 $0=$ ch2nd4
I15audChMapLFE	I15audChMapTBL. 6	INTEGER	R/W	$0=c h 1 s t 1$ 1=ch1st2 2=ch1st3 3=ch1st4 4=ch2nd1 5=ch2nd2 6=ch2nd3 $0=c h 2 n d 4$
I15audChMapRL	I15audChMapTBL. 7	INTEGER	R/W	$\begin{aligned} & 0=c h 1 s t 1 \\ & 1=c h 1 s t 2 \end{aligned}$

MIB	OID	SYNTAX	ACCESS	VALUE/RANGE
				$\begin{aligned} & 2=\operatorname{ch} 1 \mathrm{st} 3 \\ & 3=\operatorname{ch} 1 \mathrm{st} 4 \\ & 4=\operatorname{ch} 2 \mathrm{nd} 1 \\ & 5=\operatorname{ch} 2 \mathrm{nd} 2 \\ & 6=\operatorname{ch} 2 \mathrm{nd} 3 \\ & 0=\operatorname{ch} 2 \mathrm{nd} 4 \end{aligned}$
I15audChMapRR	I15audChMapTBL. 8	INTEGER	R/W	$0=c h 1$ st1 1=ch1st2 2=ch1st3 $3=$ ch1st 4 4=ch2nd1 5=ch2nd2 $6=$ ch2nd3 $0=$ ch2nd4

- I15multiTBL(9) group

MIB	OID	SYNTAX	ACCESS	VALUE/RANGE
I15mulMode	I15multiTBL.1	INTEGER	R/W	$\begin{array}{l}\text { 0=m4SCREEN } \\ 1=\text { picWFM } \\ 2=\text { wfmVEC } \\ 3=\text { wfmPIC } \\ \text { =wfmAUD }\end{array}$
$5=$ picpluswfm				
$6=$ picplusvect				
$8=$ audio				

- I15statusTBL(10) group

MIB	OID	SYNTAX	ACCESS	VALUE/RANGE
I15staDisplayTBL	I15statusTBL.1	Aggregate	-	
I15staDisplayLog	I15staDisplayTBL.1	INTEGER	R/W	0=DisplayLog
I15staDisplayDump	I15staDisplayTBL.2	INTEGER	R/W	0=DisplayDump
I15staDisplayAudio	I15staDisplayTBL.3	INTEGER	R/W	0=DisplayAudio
I15staDisplayEdh	I15staDisplayTBL.4	INTEGER	R/W	0=DisplayEdh
I15staLogTBL	I15statusTBL.2	Aggregate	-	
I15staLogLog	I15staLogTBL.1	INTEGER	R/W	0=stop 1=start
I15staLogClear	I15staLogTBL.2	INTEGER	R/W	0=LogClear
I15staLogMode	I15staLogTBL.3	INTEGER	R/W	0=overWR
I15staDumpTBL		Aggregate	-	
I15staDumpMode	I15statusTBL.3	INTEGER	R/W	0=run

MIB	OID	SYNTAX	ACCESS	VALUE/RANGE
115staDumpDisplay	I15staDumpTBL. 2	INTEGER	R/W	$\begin{aligned} & 0=\text { serial } \\ & \text { 1=compo } \\ & \text { 2=binary } \end{aligned}$
115staDumpLineNumber	I15staDumpTBL. 3	INTEGER	R/W	1-1125
I15staDumpSample	I15staDumpTBL. 4	INTEGER	R/W	0-2749
115staDumpEav	I15staDumpTBL. 5	INTEGER	R/W	0=DumpEav
115staDumpSav	115staDumpTBL. 6	INTEGER	R/W	0=DumpSav
I15staDumpFD	I15staDumpTBL. 7	INTEGER	R/W	$\begin{aligned} & 0=\text { line } \\ & 1=\text { sample } \end{aligned}$
115staAudioTBL	115statusTBL. 4	Aggregate	-	-
I15staAudioChSEL	I15staAudioTBL. 1	INTEGER	R/W	$\begin{aligned} & 0=\operatorname{ch} 1 \mathrm{st} 1 \\ & 1=\operatorname{ch} 1 \mathrm{st} 2 \\ & 2=\operatorname{ch} 1 \mathrm{st} 3 \\ & 3=\operatorname{ch} 1 \mathrm{st} 4 \\ & 4=\operatorname{ch} 2 \mathrm{nd} 1 \\ & 5=\mathrm{ch} 2 \mathrm{nd} 2 \\ & 6=\operatorname{ch} 2 \mathrm{nd} 3 \\ & 0=\operatorname{ch} 2 \mathrm{nd} 4 \end{aligned}$
115staAncPacketTBL	115statusTBL. 5	Aggregate	-	-
115staAncpacFormatidTBL	I15staAncPacketTBL. 1	Aggregate	-	-
I15staAncpacFormatPacketsel	I15staAncpacFormatidTBL. 1	INTEGER	R/W	$\begin{aligned} & 0=\text { smpte } \\ & 1=\text { arib } \end{aligned}$
115staAncpacVancaribTBL	I15staAncPacketTBL. 2	Aggregate	-	-
115staAncVanClocapTBL	115staAncpacVancaribTBL. 1	Aggregate	-	-
115staAncVanClocapDisplay	I15staAncVanClocapTBL. 1	INTEGER	R/W	$\begin{aligned} & 0=\text { text } \\ & 1=\text { dump } \end{aligned}$
I15staAncVanClocapCaptionnumber	I15staAncVanClocapTBL. 2	INTEGER	R/W	$\begin{aligned} & 0=n 1 \\ & 1=n 2 \\ & 2=n 3 \end{aligned}$
I15staAncVanClocapDumpmode	115staAncVanClocapTBL. 3	INTEGER	R/W	$\begin{aligned} & 0=\text { hex } \\ & \text { 1=binary } \end{aligned}$
115staAncVanNetqTBL	115staAncpacVancaribTBL. 2	Aggregate	-	-
115staAncVanNetqDisplay	I15staAncVanNetqTBL. 1	INTEGER	R/W	$\begin{aligned} & 0=\text { text } \\ & 1=\text { dump } \end{aligned}$
I15staAncVanNetqDumpmode	115staAncVanNetqTBL. 2	INTEGER	R/W	$\begin{aligned} & 0=\text { hex } \\ & \text { 1=binary } \end{aligned}$
I15staAncVanNetqQ1	115staAncVanNetqTBL. 3	INTEGER	R/W	$\begin{aligned} & 0=o f f \\ & 1=o n \end{aligned}$
I15staAncVanNetqQ2	115staAncVanNetqTBL. 4	INTEGER	R/W	$\begin{aligned} & 0=o f f \\ & 1=o n \end{aligned}$
I15staAncVanNetqQ3	115staAncVanNetqTBL. 5	INTEGER	R/W	$\begin{aligned} & 0=o f f \\ & 1=o n \end{aligned}$
I15staAncVanNetqQ4	115staAncVanNetqTBL. 6	INTEGER	R/W	$\begin{aligned} & 0=o f f \\ & 1=o n \end{aligned}$
I15staAncVanNetqQ5	115staAncVanNetqTBL. 7	INTEGER	R/W	$0=$ off

MIB	OID	SYNTAX	ACCESS	VALUE/RANGE
				1=on
I15staAncVanNetqQ6	115staAncVanNetqTBL. 8	INTEGER	R/W	$\begin{aligned} & 0=o f f \\ & 1=\text { on } \end{aligned}$
I15staAncVanNetqQ7	I15staAncVanNetqTBL. 9	INTEGER	R/W	$\begin{aligned} & 0=\text { off } \\ & 1=\text { on } \end{aligned}$
I15staAncVanNetqQ8	I15staAncVanNetqTBL. 10	INTEGER	R/W	$\begin{aligned} & 0=o f f \\ & 1=\text { on } \end{aligned}$
I15staAncVanNetqQ9	I15staAncVanNetqTBL. 11	INTEGER	R/W	$\begin{aligned} & 0=\text { off } \\ & 1=\text { on } \end{aligned}$
115staAncVanNetqQ10	I15staAncVanNetqTBL. 12	INTEGER	R/W	$\begin{aligned} & 0=o f f \\ & 1=o n \end{aligned}$
I15staAncVanNetqQ11	I15staAncVanNetqTBL. 13	INTEGER	R/W	$\begin{aligned} & 0=\text { off } \\ & 1=\text { on } \end{aligned}$
115staAncVanNetqQ12	I15staAncVanNetqTBL. 14	INTEGER	R/W	$\begin{aligned} & 0=\text { off } \\ & 1=\text { on } \end{aligned}$
115staAncVanNetqQ13	I15staAncVanNetqTBL. 15	INTEGER	R/W	$\begin{aligned} & 0=o f f \\ & 1=\text { on } \end{aligned}$
I15staAncVanNetqQ14	I15staAncVanNetqTBL. 16	INTEGER	R/W	$\begin{aligned} & 0=o f f \\ & 1=o n \end{aligned}$
I15staAncVanNetqQ15	I15staAncVanNetqTBL. 17	INTEGER	R/W	$\begin{aligned} & 0=\text { off } \\ & 1=\text { on } \end{aligned}$
I15staAncVanNetqQ16	I15staAncVanNetqTBL. 18	INTEGER	R/W	$\begin{aligned} & 0=o f f \\ & 1=\text { on } \end{aligned}$
I15staAncVanNetqQ17	I15staAncVanNetqTBL. 19	INTEGER	R/W	$\begin{aligned} & 0=o f f \\ & 1=o n \end{aligned}$
I15staAncVanNetqQ18	I15staAncVanNetqTBL. 20	INTEGER	R/W	$\begin{aligned} & 0=o f f \\ & 1=o n \end{aligned}$
I15staAncVanNetqQ19	I15staAncVanNetqTBL. 21	INTEGER	R/W	$\begin{aligned} & 0=\text { off } \\ & 1=\text { on } \end{aligned}$
I15staAncVanNetqQ20	I15staAncVanNetqTBL. 22	INTEGER	R/W	$\begin{aligned} & 0=o f f \\ & 1=\text { on } \end{aligned}$
I15staAncVanNetqQ21	I15staAncVanNetqTBL. 23	INTEGER	R/W	$\begin{aligned} & 0=o f f \\ & 1=\text { on } \end{aligned}$
115staAncVanNetqQ22	I15staAncVanNetqTBL. 24	INTEGER	R/W	$\begin{aligned} & 0=\text { off } \\ & 1=\text { on } \end{aligned}$
115staAncVanNetqQ23	I15staAncVanNetqTBL. 25	INTEGER	R/W	$\begin{aligned} & 0=\text { off } \\ & 1=\text { on } \end{aligned}$
I15staAncVanNetqQ24	I15staAncVanNetqTBL. 26	INTEGER	R/W	$\begin{aligned} & 0=\text { off } \\ & 1=\text { on } \end{aligned}$
115staAncVanNetqQ25	I15staAncVanNetqTBL. 27	INTEGER	R/W	$\begin{aligned} & 0=\text { off } \\ & 1=\text { on } \end{aligned}$
115staAncVanNetqQ26	I15staAncVanNetqTBL. 28	INTEGER	R/W	$\begin{aligned} & 0=\text { off } \\ & 1=\text { on } \end{aligned}$
115staAncVanNetqQ27	I15staAncVanNetqTBL. 29	INTEGER	R/W	$\begin{aligned} & 0=\text { off } \\ & 1=\text { on } \end{aligned}$

MIB	OID	SYNTAX	ACCESS	VALUE/RANGE
115staAncVanNetqQ28	I15staAncVanNetqTBL. 30	INTEGER	R/W	$\begin{aligned} & 0=\text { off } \\ & 1=\text { on } \end{aligned}$
115staAncVanNetqQ29	115staAncVanNetqTBL. 31	INTEGER	R/W	$\begin{aligned} & 0=o f f \\ & 1=o n \end{aligned}$
115staAncVanNetqQ30	I15staAncVanNetqTBL. 32	INTEGER	R/W	$\begin{aligned} & 0=o f f \\ & 1=o n \end{aligned}$
I15staAncVanNetqQ31	115staAncVanNetqTBL. 33	INTEGER	R/W	$\begin{aligned} & 0=\text { off } \\ & 1=o n \end{aligned}$
115staAncVanNetqQ32	I15staAncVanNetqTBL. 34	INTEGER	R/W	$\begin{aligned} & 0=o f f \\ & 1=o n \end{aligned}$
115staErrTBL	115statusTBL. 6	Aggregate	-	-
I15staRemoteErr	I15staErrTBL. 1	INTEGER	R/W	$0=$ positive 1=negative 2=off
115staErrCountRate	115staErrTBL. 2	INTEGER	R/W	$\begin{aligned} & 0=\mathrm{vRATE} \\ & 1=\sec 1 \end{aligned}$
115staErrDetectTBL	I15staErrTBL. 3	Aggregate	-	-
115staErrDetectTrs	I15staErrDetectTBL. 1	INTEGER	R/W	$\begin{aligned} & 0=o f f \\ & 1=o n \end{aligned}$
115staErrDetectLine	I15staErrDetectTBL. 2	INTEGER	R/W	$\begin{aligned} & 0=o f f \\ & 1=o n \end{aligned}$
115staErrDetectCRC	115staErrDetectTBL. 3	INTEGER	R/W	$\begin{aligned} & 0=\text { off } \\ & 1=\text { on } \end{aligned}$
115staErrDetectEDH	115staErrDetectTBL. 4	INTEGER	R/W	$\begin{aligned} & 0=o f f \\ & 1=o n \end{aligned}$
I15staErrDetectParity	I15staErrDetectTBL. 6	INTEGER	R/W	$\begin{aligned} & 0=o f f \\ & 1=o n \end{aligned}$
115staErrDetectCheckSum	I15staErrDetectTBL. 7	INTEGER	R/W	$\begin{aligned} & 0=\text { off } \\ & 1=\text { on } \end{aligned}$
115staErrDetectGamut	115staErrDetectTBL. 9	INTEGER	R/W	$\begin{aligned} & 0=o f f \\ & 1=o n \end{aligned}$
115staErrDetectCGamut	I15staErrDetectTBL. 10	INTEGER	R/W	$\begin{aligned} & 0=o f f \\ & 1=o n \end{aligned}$
115staErrDetectBCH	I15staErrDetectTBL. 13	INTEGER	R/W	$\begin{aligned} & 0=\text { off } \\ & 1=\text { on } \end{aligned}$
115staErrDetectAudCrc	I15staErrDetectTBL. 15	INTEGER	R/W	$\begin{aligned} & 0=o f f \\ & 1=o n \end{aligned}$
115staErrLevTBL	115staErrTBL. 4	Aggregate	-	-
115staErrLevGamutTBL	I15staErrLevTBL. 1	Aggregate	-	-
115staErrLevGamutUpper	I15staErrLevGamutTBL. 1	DisplayString	R/W	$\begin{aligned} & 90.8-109.4(\%) \\ & 635.6-765.8(\mathrm{mV}) \end{aligned}$
I15staErrLevGamutLower	I15staErrLevGamutTBL. 2	DisplayString	R/W	$\begin{aligned} & -7.2-6.1(\%) \\ & -50.4-42.7(\mathrm{mV}) \end{aligned}$
115staErrLevCGamutTBL	115staErrLevTBL. 2	Aggregate	-	-
I15staErrLevCGamutUpper	115staErrLevCGamutTBL. 1	DisplayString	R/W	90.0-135.0 (\%)

MIB	OID	SYNTAX	ACCESS	VALUE/RANGE
I15staErrLevCGamutLower	I15staErrLevCGamutTBL.2	DisplayString	R/W	$-40.0--20.0(\%)$ $-285.6--140.0(\mathrm{mV})$
I15staErrDetectGamutFilterSD	I15staErrLevTBL.3	INTEGER	R/W	$0=1 \mathrm{M}$ $1=$ off
I15staErrLevUnit	I15staErrLevTBL.6	INTEGER	R/W	$0=$ per $1=\mathrm{mV}$
I15staErrDetectGamutFilterHD	I15staErrLevTBL.7	INTEGER	R/W	$0=1 \mathrm{M}$ $1=2 \mathrm{p} 8 \mathrm{M}$ $2=$ off
I15staErrDisplay	I15staErrTBL.5	INTEGER	R/W	$0=$ refresh $1=$ hold
I15staReset	I15statusTBL.7	INTEGER	R/W	$0=$ Reset

- I15captureTBL(11) group

MIB	OID	SYNTAX	ACCESS	VALUE/RANGE
I15capDisplay	I15captureTBL.1	INTEGER	R/W	0=real 1=hold $2=b o t h ~$
I15capFileSelect	I15captureTBL.2	INTEGER	R/W	0=bmpbsx 1=bmp $2=b s x ~$

- I15filesTBL(12) group

MIB	OID	SYNTAX	ACCESS	VALUE/RANGE
I15filMakeTBL	I15filesTBL.1	Aggregate	-	
I15filMakeStatus	I15filMakeTBL.1	INTEGER	R/W	0=MakeStatus
I15filMakeLog	I15filMakeTBL.2	INTEGER	R/W	0=MakeLog
I15filMakeDump	I15filMakeTBL.3	INTEGER	R/W	0=MakeDump
I15filMakeCapture	I15filMakeTBL.4	INTEGER	R/W	0=MakeCapture
I15filRecall	I15filesTBL.2	INTEGER	R/W	$1-30$

- I15systemTBL(13) group

MIB	OID	SYNTAX	ACCESS	VALUE/RANGE
I15sysFormatTBL	\|15systemTBL. 1	Aggregate		
I15sysFormatMode	I15sysFormatTBL. 1	INTEGER	R/W	$\begin{aligned} & 0=\text { auto } \\ & 1=\text { manual } \end{aligned}$
115sysFormatFormat	115sysFormatTBL. 2	INTEGER	R/W	$\begin{aligned} & 0=\text { frm1080160 } \\ & \text { 1=frm1080159p94 } \\ & \text { 2=frm1080150 } \\ & \text { 3=frm1080PSF30 } \\ & \text { 4=frm1080PSF29p97 } \\ & \text { 5=frm1080PSF25 } \\ & \text { 6=frm1080PSF24 } \\ & \text { 7=frm1080PSF23p98 } \end{aligned}$

MIB	OID	SYNTAX	ACCESS	VALUE/RANGE
				$\begin{aligned} & 8=\text { frm1080P30 } \\ & 9=\text { frm1080P29p97 } \\ & 10=\text { frm1080P25 } \\ & 11=\text { frm1080P24 } \\ & 12=\text { frm1080P23p98 } \\ & 13=\text { frm720P60 } \\ & 14=\text { frm720P59p94 } \\ & 15=\text { frm720P50 } \\ & 16=\text { frm720P30 } \\ & 17=\text { frm720P29p97 } \\ & 18=\text { frm720P25 } \\ & 19=\text { frm720P24 } \\ & 20=\text { frm720P23p98 } \\ & 21=f r m 525159 p 94 \\ & 22=f r m 625150 \end{aligned}$
I15sysFormatLink	I15sysFormatTBL. 3	INTEGER	R/W	$\begin{aligned} & 0=\text { single } \\ & \text { 1=dual-A } \end{aligned}$
115sysFormatCompositeFormat	I15sysFormatTBL. 4	INTEGER	R/W	$\begin{aligned} & 0=\text { auto } \\ & 1=\text { ntsc } \\ & 2=\text { pal } \end{aligned}$
I15sysFormatIPSF	I15sysFormatTBL. 5	INTEGER	R/W	$\begin{aligned} & 0=\text { interlac } \\ & 1=\text { segFram } \end{aligned}$
115sysColor	115systemTBL. 2	INTEGER	R/W	$\begin{aligned} & \text { 0=color3200 } \\ & \text { 1=color6500 } \\ & \text { 2=color9300 } \\ & \text { 3=through } \end{aligned}$
I15sysDispTBL	115systemTBL. 3	Aggregate	-	-
115sysDisplnfoTBL	I15sysDispTBL. 1	Aggregate	-	-
I15sysDispInfoFormat	I15sysDisplnfoTBL. 1	INTEGER	R/W	$\begin{aligned} & 0=\text { on } \\ & 2=\text { off } \end{aligned}$
115sysDisplnfoTime	I15sysDispInfoTBL. 2	INTEGER	R/W	$\begin{aligned} & 0=\text { real } \\ & \text { 1=timecode } \\ & 2=\text { off } \end{aligned}$
115sysDisplnfoDate	I15sysDisplnfoTBL. 3	INTEGER	R/W	$\begin{aligned} & 0=y m d \\ & 1=\mathrm{mdy} \\ & 2=\mathrm{dmy} \\ & 3=\text { off } \end{aligned}$
I15sysDispInfoColor	I15sysDisplnfoTBL. 4	INTEGER	R/W	$\begin{aligned} & 0=\text { off } \\ & 1=\text { on } \end{aligned}$
115sysDispInfoTimeCode	I15sysDisplnfoTBL. 5	INTEGER	R/W	$\begin{aligned} & 0=\text { Itc } \\ & 1=\text { vitc } \\ & 2=\text { dvitc } \end{aligned}$
115sysDispDisplayBackLight	115sysDispTBL. 2	INTEGER	R/W	$\begin{aligned} & 0=\text { high } \\ & 1=\text { low } \end{aligned}$
I15sysDispDisplayAutoOff	I15sysDispTBL. 3	INTEGER	R/W	$\begin{aligned} & 0=\text { off } \\ & 1=\mathrm{min} 5 \end{aligned}$

MIB	OID	SYNTAX	ACCESS	VALUE/RANGE
I15sysDispDisplayBattery	I15sysDispTBL.4	INTEGER	R/W	$2=$ min30 $3=$ min60
$0=$ idx $1=$ anton $2=$ others				
$3=$ off				

- I15filesTBL(14) group

MIB	OID	SYNTAX	ACCESS	VALUE/RANGE
I15trapStrTBL	I15trapTBL.1	Aggregate	-	-
I15trapManagerlp	I15trapTBL.2	IpAddress	R/W	-
I15trapID	I15trapTBL.3	IpAddress	R/W	-

17.4.5 Specific Trap

Specific Trap Type	Description
1	Fan stop
2	Fan start
3	No input signal
4	Format error
5	TRS error
6	Line number error
7	CRC LUMA error
8	CRC CHROMA error
9	Checksum error
10	BCH error
11	EDH error
13	Parity error
21	Audio CRC error
23	Gamut error
24	Composite gamut error
37	No error (at error recovery and startup)

17.4.6 Variable Binding List

- index 1

OID : leader(20111).Iv5330(15).Iv5330ST1(1).I15trapTBL(14).I15trapStrTBL(1).1.0
Syntax: Counter
Range : $\quad 1$ to 4294967295 (overflow occurs if this range is exceeded)
Description: The total number of enterprise traps sent after starting up

- index 2

OID : leader(20111).Iv5330(15).Iv5330ST1(1).I15trapTBL(14).I15trapStrTBL(1).2.0
Syntax: Octet String
Range: Up to 40 characters
Description: Date/time when the error occurred and line information YYYY/MM/DD hh:mm:ss sdi, ref (example: 2004/07/15 11:30:11 A,INT)
$\mathrm{YYYY}=$ year, $\mathrm{MM}=$ month, $\mathrm{DD}=$ day, $\mathrm{hh}=$ hour, $\mathrm{mm}=$ minute,
ss = second, sdi = SDI input (A or B), ref $=$ reference (INT or EXT)

- index 3

OID : leader(20111).Iv5330(15).Iv5330ST1(1).I15trapTBL(14).I15trapStrTBL(1).3.0
Syntax: Octet String
Range: Up to 40 characters
Description: Format information

- index 4

OID : leader(20111).Iv5330(15).Iv5330ST1(1).I15trapTBL(14).I15trapStrTBL(1).4.0
Syntax: Octet String
Range: Up to 40 characters
Description: Error information

18. Calibration and Repairs

This instrument has been carefully examined at the factory to ensure that its performance is in accordance with the standards. However, because of factors such as parts wearing out over time, the performance of the instrument may degrade. To ensure stable performance, we recommend that you have the instrument calibrated regularly. Also, if the instrument malfunctions, repairs are necessary. For repairs and calibration, contact your local LEADER agent.

19. APPENDIX
 19.1 Menu Tree

The menu structure is indicated below. The default settings are underlined.

19.1.1 Picture Menu

19.1.2 CINELITE Menu

19.1.3 CINEZONE Menu

19.1.4 Video Signal Waveform Menu

19. APPENDIX

F7 next

F2 EAV-SAV (REMOVE / PASS)
F3 TIMING
MODE
(NORMAL / PASS)
F4 MODE
(OVERLAY / PARADE / TIMING)
F5 DISPLAY

($\underline{\mathrm{ON} / \mathrm{OFF} \text {) }) ~}$

(ON / OFF)
(ON / OFF)

F6 up
F7 p
prev
menu

19.1.5 Vector Menu

19.1.6 Multi-Screen Display Menu (Audio Menu)

19.1.7 Status Menu

F6 ${ }_{\text {RESE }}^{\text {ERRO }}$ RESET
F7 ${ }^{\text {up }}$

19.1.8 View Finder Menu

$\begin{gathered} \text { VIEW } \\ \text { FINDER } \end{gathered}$	F5	CHROMA\%	$(50-\underline{100}-150)$
	F6	APERTURE	($\underline{0}-200$)
	V	BRIGHT	$(-50 \%-\underline{0 \%}-50 \%)$
	H	CONT	($50 \%-\underline{100 \%-200 \% ~}$

19.1.9 Screen Capture Menu

19.1.11 Preset Registration Menu

19.1.12 Preset Menu

19.2 FIRMWARE REVISION HISTORY

This manual was written for firmware version 4.50.
To view the firmware version, press SYS, F•4 INTRFACE\&LICENSE, and then F•4 LICENSE SETUP.

- Ver 4.21
- The contrast range on the picture display has been expanded to 200\%.
- The CINELITE Advanced feature has been added to the CINELITE display.
- Measured values can now be recalled through TELNET on the CINELITE display.
- In the search feature of CINEZONE display, the range to assign colors has been made variable, and the colors are now displayed with gradation.
- Ver 3.2
- LUMA has been added to the pseudo-composite display filters of the video signal waveform display.
- A 2.8 MHz low-pass filter for gamut errors has been added to the status display (only for HD).
- Ver 3.1
- SNMP support was added.
- In the audio display, -9 dB reference level was added.
- Ver 2.6
- LV 5330 SER02 (GAMUT \& LEVEL ERROR) support was added.
- Ver 2.5
- LV 5330 SER01 (HISTOGRAM \& USER GAMMA DISPLAY) support was added.
- A feature that enables you to display pictures at their gamut errors on the picture display was added.
- A feature that enables you to turn regamma ON or OFF on the CINELITE display was added.
- Ver 2.3
- A feature that enables you to display pictures at their full size on the picture display was added.
- A feature that enables you to display squeezed pictures on the picture display was added.
- A feature that enables you to perform IP conversion on the picture display was added.

- Ver 2.2

- A feature that enables you to display waveforms in the video signal waveform display in colors that correspond to G, B, and R was added.
- In the system settings, the option to not adjust the monitor's color temperature was added.
- Ver 2.1
- Dual link (link A) support was added.
- D-VITC support was added.
- Support for having the key LEDs lit at all times was added.
- CC608 support was added.
- A feature that enables you to turn R, G, and B ON or OFF on the picture display was added.
- A feature that enables you to display the luminance level (\%) at the reference position on the CINELITE display was added.
- A feature that enables you to display the difference between measured points (P2-P1 and P3-P1) on the CINELITE display was added.
- A feature that enables you to turn measured points ON or OFF on the CINELITE display was added.
- A feature that enables you to display the CINELITE display's \%DISPLAY on the CINEZONE display was added.
- A feature that enables you to color waveforms when you are displaying the GBR (RGB) parade display on the video signal waveform display was added.
- ACTIVE was added to the options that can be selected for the SWEEP MAG setting on the video signal waveform display when you are displaying the composite display.
- A feature that enables you to select the 5 bar display unit (\% or mV) on the vector waveform display was added.
- PIC+WFM and PIC+VEC were added to the options that can be selected for the MODE setting on the multi display.
- 5BAR was added to the options that can be selected for the LOWER setting on the multi display.
- A feature that enables you to turn the filter ON or OFF on the status display when you are detecting gamut and composite gamut errors was added.
- Ver 1.6
- Support for license keys was added.

Index

\%-	
\%/RGB... 70	
\%DISPLAY	.70,80
-1-	
1st GROUP.. 122	
-2-	
2nd GROUP .. 122	
-7	
75\%COLOR SCALE ... 101	
-A-	
ALL COPY FROM USB 46	
ALL COPY TO USB ... 46	
ANC PACKET .. 144	
APERTURE ... 63, 166	
ASPECT .. 54	
AUDIO .. 120, 142	
AUDIO CRC ... 160	
AUTO OFF ... 36	
B-	
BACK LIGHT ... 36	
BATTERY ... 36	
BCH ERROR ... 160	
BRIGHT .. 53, 165	

C. 123
C.GAMUT ERROR 160
C.GAMUT LOWER \% 163
C.GAMUT LOWER mV 163
C.GAMUT UPPER \% 163
C.GAMUT UPPER mV 163
CAL 72, 76
CAL F 73
CAL SET 73
CAPTION NUMBER 151
CAPTURE 47
CC 59
CENTER 56
CH SELECT 143
CH1 104
CH2 104
CH3 104
CHANNEL MAPPING 123
CHAR SET 39, 43
CHECKSUM ERROR 159
CHROMA\% 63, 166
CINELITE 64
CINELITE ADVANCE 71
CINEZONE 78
CLEAR 135
CLEAR ALL 39, 43
CLOCK SET 40
CLOSED CAPTION 150
COLOR 35
COLOR BAR 113
COLOR MATRIX 96, 112
COLOR SYSTEM 96, 112
COLOR TEMP 33
COMMENT INPUT 43
COMPOSIT FORMAT 33
COMPOSIT GAMUT 163
CONT 53, 165
COPY 77
COUNT RATE 157
CRC ERROR 158
CURSOR 93
-D-
DATA CLEAR 73
DATA DUMP 137
DATE 34
DATE\&TIME 40
DAY 40
DELETE 43, 45
DHCP/IP SELECT 38
DISPLAY34, 48, 60, 104, 114
DUMP MODE 151, 153
-E-
EAV JUMP 140
EAV-SAV. 102
EDH 146
EDH ERROR 158
EIA-608. 155
EIA-708 154
ERROR CONFIG 156
ERROR DETECT 157
ERROR DISPLAY 164
ERROR LEVEL 161, 162, 163
ERROR RESET 164
ETC 58
ETHERNET 38
EXTREF PHASE 116
—F-
F.D65, 140
f_Stop DISPLAY 68
FD VAR. 94
FIELD 58, 90, 93, 111
FILE DELETE 51, 136, 141
FILTER 86
FORMAT. 31, 34
FORMAT ID 148
FRM/FLD FREQ 32
FTP. 179
-G- 109
GAIN FILTER 85
GAIN MAG 85, 109
GAIN VAR. 86, 109
GAMMA 72, 76
GAMUT. 162
GAMUT ERROR 59, 159
GAMUT FILTER. 161
GAMUT LOWER \% 162
GAMUT LOWER mV 162
GAMUT UPPER \% 162
GAMUT UPPER mV 162
GATEWAY 38
GBR COLOR 98

- H-
H POS 84
H_SWEEP 89
HOLD 48
HOUR 40
——
i/PsF SELECT 32
INFORMATION. 34
INSERT 43
INTEN. 84
INTEN/SCALE 106
INTRFACE\&LICENSE 37
IP ADRS 38
IP_CONV 62
IQ AXIS. 107
-L-
L. 123
L CH SELECT 128
LEVEL METER. 124
LEVEL\% 82
LFE 123
LICENSE SETUP 39
LIGHT 37
LINE ERROR 158
LINE SELECT 57, 92, 110
LINK 33
LOG 132, 135
LOG MODE 135
LOWER 169
LOWER\% 81
- M-
MARKER 54, 108
MEAS DISP. 66
MEAS POS 64
MEAS SIZE 66
MEMORY 43
MEMORY CLEAR 119
MINUTE 40
MODE $.31,78,103,120,121,138,167$
MONTH 40
MULTI 167
MULTI AUDIO 120, 169
MULTI CINELITE 169
MULTI STATUS 169
MULTI VEC 169
MULTI WFM 169
$-\mathrm{N}-$
NET-Q. 152
—P—
PACKET SELECT 148
PARITY ERROR 159
PEAK HOLD 125
PHONES 127
PHONES OUT 127
PICTURE 52
PROGRAM 155
-R-
R. 123
R CH SELECT 128
RANGE 124
RANGE\% 82
RECALL 44, 45
RECALL USB 50
REF DEFAULT 119
REF LEVEL 124
REF SET 95
REF_SET 68
REGAMMA 77
REGISTER 40
REMOTE 37, 170
REMOTE ERR OUT 156, 171
RGB 62
RGB COLOR 98
RL 123
RR 123
USER REF SET119
-V-
V POS 84
V_SWEEP 89
V-ANC ARIB 150, 152
V-ANC SMPTE 154
VBI 156
VECTOR. 105
VECTOR INTEN 106
VIEW FINDER 165
VOLUME 127
-W-
WFM 83WFM INTEN84
-X—
X UNIT. 95
XY SEL 94
$-Y$ -
Y UNIT. 95
YEAR. 40
YGBR 97
YRGB 97
-Z-
ZONE DISPLAY 80

Following information is for Chinese RoHS only

所含有毒有害物质信息

部件号码：LV 5330

此标志适用于在中国销售的电子信息产品，依据2006年2月28日公布的
《电子信息产品污染控制管理办法》以及SJ／T11364－2006《电子信息产品污染
控制标识要求》，表示该产品在使用完结后可再利用。数字表示的是环境保护使用期限，只要遵守与本产品有关的安全和使用上的注意事项，从制造日算起在数字所表示的年限内，产品不会产生环境污染和对人体，财产的影响。
产品适当使用后报废的方法请遵从电子信息产品的回收，再利用相关法令。
详细请咨询各级政府主管部门。

产品中有毒有害物质或元素的名称及含量

部件名称 Parts	有毒有害物质或元素 Hazardous Substances in each Part					
	$\begin{aligned} & \hline \text { 铅 } \\ & (\mathrm{Pb}) \end{aligned}$	$\begin{gathered} \text { 汞 } \\ (\mathrm{Hg}) \end{gathered}$	$\begin{aligned} & \hline \text { 镉 } \\ & \text { (Cd) } \end{aligned}$	$\begin{gathered} \hline \text { 六价铬 } \\ (\mathrm{Cr}(\mathrm{VI})) \end{gathered}$	多溴联苯 （PBB）	$\begin{gathered} \hline \text { 多溴二苯醚 } \\ \text { (PBDE) } \end{gathered}$
实装基板	\times	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
主体部	\times	\bigcirc	O	\bigcirc	\bigcirc	\bigcirc
液晶显示模组	\times	\bigcirc	O	\bigcirc	\bigcirc	\bigcirc
风扇	\times	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
线材料一套	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
外筐	O	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
附件	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
包装材	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
电池	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
备注） O：表示该有毒有害物质在该部件所有均质材料中的含量均在SJ／T11363－2006 规定的限量要求以下。 \times ：表示该有毒有害物质或元素至少在该部件的某一均质材料中的含量超出SJ／T11363－2006标准规定的限量要求。						

LEADER ELECTRONICS CORP.

2-6-33 Tsunashima-Higashi, Kohoku-ku, Yokohama 223-8505, Japan PHONE:81-45-541-2123 FAX:81-45-541-2823 http://www.leader.co.jp

[^0]: * The 75-mm VESA mounting holes cannot be used if the LV 5330 has a battery adapter attached to it.

[^1]: 525i/59.94 black burst signal
 1080i/59.94
 1080p/29.97
 1080PsF/29.97
 1080PsF/23.98 (The black burst signal must have a 10-field ID.)
 1080p/23.98 (The black burst signal must have a 10-field ID.)
 720p/59.94
 525i/59.94
 625i/50 black burst signal
 1080i/50
 1080p/25
 1080PsF/25
 625i/50

[^2]: ftp> [Command] + [Space] + [Parameter 1] + [Space] + [Parameter 2]

